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1.1 Linear systems and their solutions

Bad news: the amusement park you manage has lost the breakdown of adult,
child, senior, and student tickets sales for the day. The good news is that you
do have some information:

• By counting the total number of tickets remaining in the office, you know
that the park sold 960 total tickets.

• From a partial count of sales, you know that you sold 768 adult and child
tickets.

• Since discount tickets (child, student, and senior) are processed differently
than full-priced tickets, you have a record of how many of these tickets
you sold: 704.

• By counting the money in the register, you know that the total revenue
for the day was $10,240. The price of an adult ticket is $20, the price of
a child’s ticket is $5, the price of a student ticket is $10, and the price of
a senior ticket is $15.

How could we use these data to piece together how many of each type of
ticket were sold? We should probably start by defining what we don’t know.
Let a, c, s, and e be the number of adult, child, student, and senior tickets,
respectively. If we phrase the first idea above in terms of these variables we
have

a+ c+ s+ e = 960.

We can apply the same methodology to each of the pieces of information we
know to construct the following system of equations:

a + c + s + e = 960 (total tickets)

a + c = 768 (adult and child tickets)

c + s + e = 704 (discount tickets)

20a + 5c + 10s + 15e = 10240 (total revenue).

You might remember solving systems of liner equations like this one by sequen-
tially eliminating variables through (1) multiplying an equation by a constant;
(2) adding and subtracting rows. In both of these operations, the coefficients
of the variables, not the variables themselves, are the important feature of the
equations. For instance, when you add two equations together, you’re actually
adding coefficients corresponding to the same variable, and when you multi-
ply an equation by a constant, you actually multiply all the coefficients by the
chosen constant. So solving systems of linear equations using elimination is all
about manipulating the coefficients of the system of equations.
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1.1.1 Coefficient matrices and augmented matrices

One important feature of the linear system is the coefficients of the variables on
the left side of each equation. We can capture these coefficients in a compact
form through a coefficient matrix. For instance, the coefficient matrix of our
example is

C =


1 1 1 1

1 1 0 0

0 1 1 1

20 5 10 15

 .

Reading Check 1: Pause for a second and try to articulate how you think we
created this matrix. Then compare your description to the one below.

To form the coefficient matrix of a linear system, we create one column for
each variable and one row for each equation, and place at the intersection of a
row i and a column j the coefficient of the jth variable in the ith equation.

But in addition to the coefficients of the variables of the left side of the
equation, the linear system has another important component: the values on
the right side of the equations. We can capture these too using by constructing
the augmented matrix of the linear system. Here the augmented matrix is given
by

A =


1 1 1 1 960

1 1 0 0 768

0 1 1 1 704

20 5 10 15 10240

 .

Reading Check 2: Take another second and try to articulate how you think
we created this matrix. Then compare your description to the one below.

Notice that the first four columns of the augmented matrix are identical to
the coefficient matrix and that the entry in the ith row of the last column of the
augmented matrix is just the right hand side of the ith equation.

Example 1: Find the augmented matrix of the following linear system:

13a − 17b + 19c = 3

2a + 8b − 10c = 5

a + 2b + 3c = 9.

Example 2: Find a linear system corresponding to the following augmented



10 CHAPTER 1. LINEAR SYSTEMS

matrix: 1 2 6

2 4 12

3 5 11

 .

Example 3: Find the augmented matrix of the following linear system:

6x1 + 3x2 + 2x3 = 12

5x1 + 4x2 + 3x3 = 11

Example 4: Find a linear system corresponding to the following augmented
matrix: 1 2 6

3 4 12

3 5 11

 .

Let’s turn our attention back to our ticket example. Now that we’ve had
some practice converting from systems of linear equations into augmented ma-
trices and vice versa, let’s think about the form of the augmented matrix of our
solution a = 256, c = 512, s = 64 and e = 128.

Reading Check 3: Take a second and come up with a hypothesis about how
the augmented matrix of the solution will look. Then compare your guess with
the solution below.

In the first equation of the system, a = 256, the coefficient of a is 1, and the
coefficients of the other three variables are 0. Similarly, for the second equation
in the system, c = 512, the coefficient of c is 1 and the coefficients of the other
three variables are 0. We can repeat this same type of logic for all the equations
in the solution. Then applying the same reasoning that we used the the four
examples we just completed, we can write

Asol =


1 0 0 0 256

0 1 0 0 512

0 0 1 0 64

0 0 0 1 128

 .
I think you might agree right off the bat that this matrix has some interesting

structure. In particular, there seems to be a pattern containing 1 and 0. Before
we start talking about this pattern formally, let’s define a few notions that we’ll
see are critical to understanding the number of solutions of a linear system. A
leading (left-most) 1 is called a pivot. A column containing a pivot is called a
pivot column.
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1.1.2 Row reduced echelon form

We say a matrix is in row reduced echelon form (RREF) if

• the left-most nonzero in any row is a 1

• each pivot is the only nonzero in its column

• each pivot occurs to the right of any pivot above it

• any row containing only zeros is below every row containing a nonzero

Reading Check 4: Confirm that Asol is in RREF.

If you’ve verified this previous statement, then you’ll agree that in at least
the tickets case, we formed the RREF of an augmented matrix when we were
looking for the solutions of the associated system of linear equations. This is a
key idea! In fact, it’s a general idea, too: to find the solutions to any system
of linear equations, we find the RREF of its augmented matrix.

The problem here, of course, is that actually computing the RREF by hand
is a total pain. And we’ve only done it for a simple system of 4 equations in
4 unknowns. In applications, we can have much, much larger systems whose
RREFs are practically incomputable by hand. We need a computational tool
to help us out. Matlab is the industry standard for things like this. If you
don’t have access to Matlab, there are several free alternatives that’ll get the
job done, e.g., Octave.

Let’s start by learning how to enter a matrix into Matlab. Before we talk
about specifics, let’s see an example:1 2 6

2 4 12

3 5 11

↔ [1, 2, 6; 2, 4, 12; 3, 5, 11].

Reading Check 5: Take a second and try to figure out the rules for entering
matrices in Matlab. Then test your intuition against the explanation below.

We enclose matrices in square brackets, enter one row at a time, separate
columns with commas, and separate rows with semicolons. In fact, if we enter
the command on the right, Matlab will give us a rough picture of what it thinks
we meant:

>> [1, 2, 6; 2, 4, 12; 3, 5, 11]

ans =

1 2 6

2 4 12

3 5 11
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(Remember, the vertical line is just to help us remember that the matrix we’re
looking at is an augmented matrix rather than a coefficient matrix.)

Reading Check 6: Try entering the matrices associated with the examples
from earlier into Matlab.

It would be nice to have access to the matrices we’ve entered, even if we’ve
run some commands since we entered the matrix. To do this, we’re going to
assign the matrix to a variable name. For instance,

>> A = [1, 2, 6; 2, 4, 12; 3, 5, 11]

A =

1 2 6

2 4 12

3 5 11

Assignments in Matlab always assign the value to the right of the equals sign
to the variable to the left of the equals sign. So here, we’re taking the value
represented by the matrix we’ve entered and assigning it to the variable A. If
we want to get access to A later, we can always just type A and verify that the
value of this variable is still what we think it is:

>> A

A =

1 2 6

2 4 12

3 5 11

One way in which this is particularly useful is to find the RREF of a matrix.
Whenever you’re in doubt of how to use a Matlab command, try typing help

followed by the command name. This will bring up some text describing how
the command works, including what it expects you to provide and what you
can count on it providing you. For instance,

RREF Reduced row echelon form.

R = RREF(A) produces the reduced row echelon form of A.

...

(The text goes on here, as these type of help entries often do, but usually the
most important stuff is at the top.) So, we know that if we type rref(A), then
Matlab will return a matrix R that represents the RREF of A. Let’s give it a
shot.

>> rref(A)



1.1. LINEAR SYSTEMS AND THEIR SOLUTIONS 13

ans =

1 0 -8

0 1 7

0 0 0

Reading Check 7: Using the properties of RREF that we set out earlier, verify
that this matrix is actually in RREF.

Reading Check 8: Use Matlab to compute the RREF of each of the example
augmented matrices we saw earlier. Then transform each of the RREF matrices
into a system of linear equations. Make a hypothesis about how many solutions
each linear system has.

Let’s start with Example 1.1.1. In Matlab, we enter

>> W = [13 17 19 3; 2 8 10 5; 1 2 3 9];

>> rref(W)

ans =

1.0000 0 0 2.4773

0 1.0000 0 -16.2727

0 0 1.0000 13.0227

Before we start analyzing the output of rref, let’s notice a few things about
how we input the matrix W . First, there aren’t any commas separating the
entries of the rows. Commas are just for our convenience; sometimes it’s really
help to have them there to keep everything straight, but we don’t have to have
them every time. The semicolons that mark the end of the row are not optional,
however. Second, notice that we’ve added a semicolon at the very end of the
line. This suppresses the output command. So Matlab still assigns the matrix
to the variable W, but it doesn’t show you what it’s done. It’s a good way to
save space and avoid clutter when you’re pretty sure you know what Matlab’s
done. If you want to verify that W actually contains what you think it does, just
type W in the command line, and Matlab will show you what it has stored in
that variable.

>> W

W =

13 17 19 3

2 8 10 5

1 2 3 9

If x1, x2, and x3 are the variables corresponding to the first three columns of the
augmented matrix in order from left to right, then our RREF matrix represents
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the linear system x1 = 2.4773, x2 = −16.2727, x3 = 13.0227. So the linear
system has a unique solution. Notice that just as with our tickets example, each
variable is a pivot column, and the right-most column is not a pivot column.
We’ll gather up some facts about pivot columns and their relationship to the
number solutions to a linear system and then gather up these results into some
bigger ideas at the end of this section.

1.1.3 Redundancies and inconsistencies

In Example 1.1.1, we have

>> X = [1 2 6; 2 4 12; 3 5 11;];

>> rref(X)

ans =

1 0 -8

0 1 7

0 0 0

If we assume our variables are x1 and x2 in the same spirit as the last example,
the RREF matrix corresponds to the system x1 = −8, x2 = 7 and 0 = 0. This
last equation is redundant, meaning that it’s not offering any new information.
After all, 0 = 0 is always true. We can see that two of the original equations were
redundant; the first equation x1 + 2x2 = 6 and the second equation 2x1 + 4x2 =
12 are really the scaled versions of one another. Redundancy can get more
complicated as we’ll see in future sections, but the idea will remain the same:
we don’t have as much information as we might think we have. Before we move
on, notice that each variable column is a pivot column and that the right-most
column is not a pivot column.

1.1.4 Free variables

In Example 1.1.1, we have

>> Y = [6 3 2 12; 5 4 3 11];

>> rref(Y)

ans =

1.0000 0 -0.1111 1.6667

0 1.0000 0.8889 0.6667

Assuming that our variables are x1, x2, x3 as we’ve been doing, our linear system
reads x1 − 0.11x3 = 1.66 and x2 + 0.88x3 = 0.66. The reason this example is
different than anything we’ve seen before is that we have no way of knowing
what x3 should be. But we can confirm that as soon as we choose x3, we can
uniquely determine the values of x1 and x2.
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Reading Check 9: Choose a few values of x3 and compute the resulting values
of x1 and x2.

We call x3 a free variable exactly because we have the freedom to choose it.
And because there are infinitely many choices for x3, there are infinitely many
solutions to this system of linear equations! Note that this is the first example
in which one of the variable columns is not a pivot column.

In example 1.1.1, we have

>> Z = [1 2 6; 3 4 12; 3 5 11];

>> rref(Z)

ans =

1 0 0

0 1 0

0 0 1

Assuming that our variables are x1 and x2, this RREF matrix corresponds to
x1 = 0, x2 = 0 and 0 = 1. In other words, for this system of three equations
to be true, it must be the case that x1 = 0, x2 = 0 and 0 = 1. Since we don’t
live in a numerical universe where 0 = 1, there is no solution to this linear
system! Notice that this is the first case in which the right-most column is a
pivot column.

Reading Check 10: Convince yourself using the definition of RREF that if
the right-most column is a pivot column then the system of linear equations has
no solution.

1.1.5 Summary flow chart

Let’s pull our observations about the relationship between the positions of pivot
columns and the number of solutions to a linear system into a decision tree.

1.2 Vector and Matrix Equations

So far we’ve been using the term “matrix” loosely, but before we begin talking
about how vector equations and matrix equations relate to linear systems, let’s
take some time to formalize some terms and introduce some others. A r × c
matrix is a rectangular array of numbers with r rows and c columns. We call
r × c the dimensions of the variables. A column vector is a matrix with just
one column, and a row vector is a matrix with just one row. The notation for
vectors varies, but both bold font like x and a little arrow on top like ~x both
indicate that x is a vector. (Typically, we only use the arrow when we can’t
clearly indicate that a variable is in bold case, like when we’re writing on a
blackboard.) We call the entries of a vector components, and we typically think
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of ordering the components from top to bottom in the case of a column vector or
from left to right in the case of a row vector, so that saying something like “the
first component of x” makes sense. As we’ll see, the components of vectors will
often have specific meanings in the models we’ll construct, and so it’s helpful to
be able to refer to them each specifically without any confusion.

x =


x1

x2
...

xn


← 1st component

← 2nd component
...

← nth component

If x has n components we say x is in Rn, or x ∈ Rn in mathematical shorthand.
If you haven’t seen it before, the symbol R stands for the real numbers, that
is, all the normal numbers with (possibly) infinitely many digits to the left
and right of the decimal point that use all the time. The space Rn is just the
collection of all vectors with n components which are real numbers.

We can add vectors. For instance[
a

b

]
+

[
c

d

]
=

[
a+ c

b+ d

]
.

We say that vector addition is done “component-wise”, meaning we add com-
ponents in the same position. Notice that this means that adding vectors of
different sizes doesn’t make sense.

We can also scale vectors by multiplying them by a constant. For instance,
if k is some real number, then

k

[
a

b

]
=

[
ka

kb

]
.
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Again, the multiplication affects each component of the vector individually.

But we still haven’t figured out why we should care about vectors. To get
a handle on this, let’s go back to our original example about amusement park
tickets.:

a + c + s + e = 960

a + c = 768

c + s + e = 704

20a + 5c + 10s + 15e = 10240

Up till now, we’ve been thinking about grouping these entries in rows. But
imagine we group them in columns instead. Then we can see

a + c + s + e = 960

a + c = 768

c + s + e = 704

20a + 5c + 10s + 15e = 10240

↔ a


1

1

0

20

+ c


1

1

1

5

+ s


1

0

1

10

+ e


1

0

1

15

 =


960

768

704

10240


↔ av1 + cv2 + sv3 + ev4 = b

So we’ve turned our system of linear equations into a single vector equation.
Notice that each of the vectors on the left side of this equation is a column
of the coefficient matrix. Notice that v1,v2,v3,v4 are the first 4 columns of
the coefficient matrix in order and b is the right side of the linear system. We
say b is a linear combination of the vectors v1,v2,v3,v4 with weights a, c, s, e,
respectively.

1.2.1 Linear Combinations and Spans

Linear combinations are one of the most important ideas of the early part of
this course, so it’s worth it to take a little time and make sure we have a solid
intuitive understanding of what linear combinations mean. But let’s start an
example that’s a little more basic than the one we’ve been considering. Imagine
we have a single vector

v1 =

[
1

−1

]
.

While we won’t drive ourselves crazy with the geometry of linear algebra, it
really is convenient to sometimes think about matrices and vector geometric.
For instance, if we think of the first coordinate of v1 as the x coordinate, and
the second component of v1 as the y coordinate, we can plot the vector in the
x− y plane as seen in figure 1.1.

A linear combination in general is a weighted sum vectors. But here, since
we have only one vector, any linear combination looks like x1v1. Imagine for
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Figure 1.1: Graphical representation of v1

instance that our weight x1 is -3. Then

−3v1 =

[
−3

3

]
.

We can plot this vector, too. We can see the results in figure 1.2.

Figure 1.2: Graphic representation of v1 (solid) and −3v1 (dot-dashed).

Reading Check 11: Try draw x1v1 for several more values of x1. Try posi-
tive, negative, big, and small values. What pattern do you see emerge?
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Reading Check 12: Can every vector in R2 be represented by a linear combi-
nation of v1?

If we allow x1 to vary across all real numbers, we start getting a clear picture
of a line representing all the possible x1v1 for any choice of x1. Mathematically,
we call this the span of v1 and often denote it as span(v1). We can see a
graphical representation of span(v1) in figure 1.3.

Figure 1.3: Graphic representation span(v1) (dashed).

But what if we have two vectors, say

v1 =

1

2

3

 , v2

1

1

1

?

If we consider about the first, second, and third components as x, y, and z, then
we can think of these vectors appearing in three-dimensional space as we see in
figure We can imagine taking a linear combination of these vectors, x1v1+x2v2.
For instance, if we set x2 = 0, and scale x1 along the real numbers, we get the
line span(v1, and if we set x1 = 0 and scale x2, we get another line span(v2).
We can see these in figure 1.5. But the whole span of v1 and v2 together is
more than the sum of the parts. We could take a little of v1 and a little of v2

to make a new vector, e.g., v3 = 0.5v1 + 0.5v2, which lies in the span of the
two vectors together but in neither of the individual spans. If we allow x1 and
x2 to vary across the real numbers independently, we get a much bigger set of
possible linear combinations. This collection span(v1,v2) can be seen in figure
1.3. Generally speaking, the span of a set of vectors v1,v2, . . . ,vn is the set of
all linear combinations x1v1 + x2v2 + . . .+ xnvn.

Understanding span is key to understanding whether a linear system has a
solution. We’ve seen that every linear system is equivalent to a vector equation.
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Figure 1.4: Graphic representation v1 (red) and v2 (blue).

Figure 1.5: Graphic representation span(v1) (red) and span(v2) (blue)

Determining whether the vector equation x1v1 + x2v2 + . . . + xnvn = b has a
solution is the same thing as determining whether b is in span(v1,v2, . . . ,vn).

Reading Check 13: Use the definitions in this section to convince yourself
that this last statement is true.

1.2.2 Matrix multiplication

Linear combinations like those we’ve been dealing with come up so often that
mathematicians have invented a very compact notation to describe them; it
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Figure 1.6: Graphic representation span(v1) (red), span(v2) (blue), and
span(v1,v2) (purple).

really saves on the writing.

a + c + s + e = 960

a + c = 768

c + s + e = 704

20a + 5c + 10s + 15e = 10240

Up till now, we’ve been thinking about grouping these entries in rows. But
imagine we group them in columns instead. Then we can see

a + c + s + e = 960

a + c = 768

c + s + e = 704

20a + 5c + 10s + 15e = 10240

↔ a


1

1

0

20

+ c


1

1

1

5

+ s


1

0

1

10

+ e


1

0

1

15

 =


960

768

704

10240



↔


1 1 1 1

1 1 0 0

0 1 1 1

20 5 10 15



a

c

s

e

 =


960

768

704

10240


We call this last line a matrix equation. Notice that the matrix in the equation
is just the coefficient matrix of the linear system. The vector on the left side
of the equation just contains our variables, and the vector on the right side
contains the right side of the linear system.

It’s also worth pointing out that we’ve done something kind of interesting and
important here: we’ve shown that there are three equivalent ways to represent
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a system of linear equations: as the linear system itself, as a vector equation,
and as a matrix equation. Each of these is useful in different ways, and we’ll
investigate the properties of all of them over the coming sections.

Without too much introduction, imagine we have the following

[
1 2 3

4 5 6

]7

7

7

 .
Imagine that the matrix on the left is a coefficient matrix of some linear system,
and that the vector on the right represents some particular chosen values of the
variables in that linear system. The left side of the first equation in the linear
system would read

1x1 + 2x2 + 3x3

and with our chosen values of x1, x2, x3, the left side of the first equation would
be equal to

1(7) + 2(7) + 3(7) = 42.

Notice that this is the same as taking the first row, flipping it so the first
component is at the top, multiplying component wise with the vector, and
adding the results.

Reading Check 14: Try multiplying the second row with the vector. You
should get 105 as your answer.

Reading Check 15: Try the following matrix-vector multiplication:[
3 5

7 9

][
1

2

]
.

Matlab can really help us out with this type of thing. We already know
how to input matrices and vectors, and multiplying them is as easy as tossing
an asterisk between the two. For instance, the answer to the previous question
should be

>> [3 5; 7 9] * [1;2]

ans =

13

25

For the following examples, feel free to do some by hand, but make sure you
check with Matlab.
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Reading Check 16: Try the following matrix-vector multiplication:1 2

3 5

7 11

[4

6

]
.

Reading Check 17: Try the following matrix-vector multiplication:[
11 9 7

5 3 1

]8

6

4

 .

Reading Check 18: Try the following matrix-vector multiplication:

[
1 2 3

]4

5

6

 .

1.3 Homogeneous and inhomogeneous Equations

The homogeneous equation Ax = 0 can tell us a lot about the nonhomogenous
equation Ax = b 6= 0. To get started, let’s note that x = 0 is always a solution
to Ax = 0.

Reading Check 19: Using the definition of matrix-vector multiplication from
the last section, convince yourself that this is true.

We call x = 0 the trivial solution to the equation, exactly because it’s such
an easy solution to find. A natural next question is whether there exists a
nontrivial solution x 6= 0. Let’s take a particular example.

2.0x1 + 3.0x2 + 6.0x3 = 0

9.0x1 + 2.0x2 + 6.0x3 = 0

1.0x1 + 6.0x2 + 8.0x3 = 0

Reading Check 20: Determine whether this particular system has a nontriv-
ial solution.

Reading Check 21: Make a hypothesis as to when homogeneous systems may
or may not have nontrivial solutions.
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Any homogeneous system is consistent, because x = 0 is always a solution.
Then following the flow chart we developed in the first section, we can claim
that Ax = 0 has a unique solution if every column of A has a pivot and has
infinitely many solutions if some column of A does not have a pivot. If the
equation has a unique solution, it is the trivial solution, and if the equation has
infinitely many solutions, then the system has nontrivial solutions. So Ax = 0
has a nontrivial solution if and only if A has at least 1 free variable.

But what about inhomogeneous equations? To get some intuition, let’s draw
a few pictures. Check out x1 + x2 = 0 and x1 + x2 = 2 in figure 1.7.

Figure 1.7: Graphical representation of the linear equations x1 + x2 = 0 (red)
and x1 + x2 = 2 (blue).

The solution set of the homogeneous equation passes through the origin
because the trivial solution x1 = x2 = 0 satisfies the equality. Notice that the
solution set to the inhomogeneous equation is parallel to the solution set for
the homogeneous equation. In this 2-dimensional case, we can just think of this
as just “changing the x2-intercept”, but the notion of parallel solution sets is a
general on. For another example, consider the homogeneous equation1 1

0 1

1 0

x = 0.

We saw in the last section that the span of the columns of this matrix forms
a plane in 3-dimensional space. We could also consider the inhomogeneous
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equation 1 1

0 1

1 0

x = −

2

2

2

 .
Your intuition might be telling you that the solution set to this equation will
also form a plane in 3-dimensional space, and you’d be right. We can see both
solution sets in figure 1.8. Again we see that the solution sets are parallel.

Figure 1.8: Graphical representation of the homogeneous solution set (blue) and
inhomogeneous solution set (orange).

But why are these solutions sets parallel? Well, if they were not, then they
would intersect, and so both solution sets would contain some vector y. In
symbols, Ay = 0 and Ay = b 6= 0. But then 0 = Ay = b, but we already said
that b 6= 0. So it can’t be the case that the two solutions sets share any vectors.

Let’s see this idea one more way. Imagine k is any solution to Ax = 0 and p
is a solution to Ax = b 6= 0. Consider A(k+p). We’ve shown that matrix-vector
multiplication distributes, and so we can claim with confidence that A(k+p) =
Ak + Ap = 0 + b. So k + p is a solution to the inhomogeneous equation for
any choice of k satisfying the homogeneous equation. In other words, there are
at least as many solutions to the inhomogeneous equation as there are to the
homogeneous equation, and the solution set for the inhomogeneous equation is
just the solution set of the homogeneous equation shifted (the mathematical
word is translated) by p.

But let’s tie up the big idea: we learn a lot about the solution set of the
equation Ax = b simply by looking at the solution set of Ax = 0, and studying
the inhomogeneous equation is typically a lot easier.
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Coal Electricity Steel

Coal 0 0.56 0.43

Electricity 0.72 0.11 0.40

Steel 0.28 0.33 0.17

Table 1.1: Consumptions (in percent) in our manufacturing sector economic
model. The intersection of row i and column j is the fraction of industry i’s
output that was sold to industry j. Notice that this implies that the column
should each sum to 1.

1.3.1 Application of homogeneous equations: high dimen-
sional break-even

Suppose that a model of an the manufacturing sector of an economy consists of
just three industries: coal, electricity and steel production. Define pc, pe and
ps to be the total annual output of the coal, electricity and steel industries,
respectively. In this model, we’ll assume that all output is consumed. A nat-
ural question that should come up any time you’re dealing with a real world
application is “what are the units?” And it’s a great question here, too. For our
purposes, we’ll think of our annual production in terms of their currency value;
let’s use dollars in this example. But as you might suspect, these industries
don’t operate in isolation. The coal industry buys steel to build new mines, the
steel industry buys electricity to power its plants, and so on. We can capture
these interrelated rates of consumption in Table 1.3.1. Here the intersection of
row i and column j is the fraction of industry i’s output that was sold to indus-
try j. So, for instance, the electricity buys 72% of the coal industry’s annual
output (as measured in dollars).

One question we might ask about a system like this is how much each indus-
try should produce so that every industry exactly breaks even. Remember that
the break-even point is where revenue equals cost. Let’s start with cost. How
much does the coal industry spend every every? Well, it buys 0% of its own
output, 56% of the electricity industries output, and 43% of the steel industries
output. Using symbols instead of words, this sentence reads

0pc + 0.56pe + 0.43ps.

We could perform the same conversion for the other two industries. Let’s think
about forming a cost vector that we’ll call c. Here, the components of our
cost vector will be, in order, the cost incurred by the coal, electricity and steel
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industries, respectively.

c =

 cost of coal industry

cost of electricity industry

cost of steel industry

 =

0.00pc + 0.56pe + 0.43ps

0.72pc + 0.11pe + 0.40ps

0.28pc + 0.33pe + 0.17ps


=

0.00 0.56 0.43

0.72 0.11 0.40

0.28 0.33 0.17


pcpe
ps


= Cp,

where C is the matrix and p is the vector of annual outputs. To see why this
matrix-vector product expression is powerful, we need to discuss the revenue
vector. By the definition of the problem statement, the total annual revenue of
the coal industry is just pc, and similarly for the remaining two industries. Let’s
think about defining a revenue vector r in a similar way to the cost vector, so
that the first component of r is the revenue of the coal industry, the second of
the electricity industry, and the third of the steel industry. Replacing the words
with symbols,

r =

 revenue of coal industry

revenue of electricity industry

revenue of steel industry

 =

pcpe
ps


=

1 0 0

0 1 0

0 0 1


pcpe
ps


= Rp.

When all industries break-even simultaneously, we have

c =

 cost of coal industry

cost of electricity industry

cost of steel industry

 =

 revenue of coal industry

revenue of electricity industry

revenue of steel industry

 = r.

But how do we actually solve for this case? How can we determine what value(s)
or pc, pe and ps lead to all industries breaking even? Well, we have matrix-vector
product expressions for both r and c, both of which contain the variables pc, pe
and ps that we’re after. Maybe substituting these matrix-vector products is a
good place to start.0.00 0.56 0.43

0.72 0.11 0.40

0.28 0.33 0.17


pcpe
ps

 =

1 0 0

0 1 0

0 0 1


pcpe
ps


Cp = Rp.
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For this to be a useful, we need to note that matrix-vector multiplication dis-
tributes. You might be a little rusty on these old terms, and for good reason;
we take these properties for granted all the time. Distributivity is the property
that says, for instance, that 3x− 5x = (3− 5)x. We say that the multiplication
by x is distributed across the terms. So what does that have to do with our
situation here? Well, moving both matrix-vector products to the left side of the
equation gives0.00 0.56 0.43

0.72 0.11 0.40

0.28 0.33 0.17


pcpe
ps

−
1 0 0

0 1 0

0 0 1


pcpe
ps

 =

0

0

0


Cp−Rp = 0

This is equivalent to saying that at the break even point, the cost minus the
revenue is equal to zero for each industry independently. But, since matrix-
vector multiplication distributes, we can write

Cp−Rp = (C −R)p

=


0.00 0.56 0.43

0.72 0.11 0.40

0.28 0.33 0.17

−
1 0 0

0 1 0

0 0 1



pcpe
ps

 .
But this brings to another new topic: how do we add and subtract matrices?
Well, if you had to define how to add or subtract two matrices of the same
size, how would you do it? Seriously, take a second and think about it. Got an
idea? Good. If you thought, “I’d line up the matrices and add or subtract the
equivalent positions in each matrix”, you’re on the right track. If you thought
something else, let me know; I’d love to hear your idea.

So let’s see how to do this matrix subtraction.
0.00 0.56 0.43

0.72 0.11 0.40

0.28 0.33 0.17

−
1 0 0

0 1 0

0 0 1



pcpe
ps

 =

0.00− 1 0.56 0.43

0.72 0.11− 1 0.40

0.28 0.33 0.17− 1


pcpe
ps


=

 −1 0.56 0.43

0.72 −0.89 0.40

0.28 0.33 −0.83


pcpe
ps

 .
But remember, the reason we started down this trail was to figure out the
solutions to Cp = Rp. Now we know that these solutions are the same as the
solutions to (C −R)p = 0. We can easily do this computation in Matlab.

EDU>> C = [0.00 0.56 0.43; 0.72 0.11 0.40; 0.28 0.33 0.17]

C =



1.3. HOMOGENEOUS AND INHOMOGENEOUS EQUATIONS 29

0 0.5600 0.4300

0.7200 0.1100 0.4000

0.2800 0.3300 0.1700

EDU>> R = [1 0 0; 0 1 0; 0 0 1]

R =

1 0 0

0 1 0

0 0 1

Now that we have the matrices C and R in Matlab, we can confirm that we
didn’t make any arithmetic mistakes earlier in our subtraction C −R.

EDU>> C-R

ans =

-1.0000 0.5600 0.4300

0.7200 -0.8900 0.4000

0.2800 0.3300 -0.8300

But how do we make the augmented matrix of the linear system (C −R)p = 0.
We know from the previous section that we want the matrix (C − R) the the
column vector 0 append on the right side. On straightforward option is to type
this all in manually.

EDU>> M = [-1.00 0.56 0.43 0.00; 0.72 -0.89 0.48 0.00; 0.28 0.33 -0.83 0.00]

M =

-1.0000 0.5600 0.4300 0

0.7200 -0.8900 0.4800 0

0.2800 0.3300 -0.8300 0

But as you might imagine, this can be really cumbersome for large matrices. A
much faster and more direct way is to make a new matrix with C − R placed
next to 0.

EDU>> M = [C-R [0;0;0]]

M =

-1.0000 0.5600 0.4300 0

0.7200 -0.8900 0.4000 0

0.2800 0.3300 -0.8300 0
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Regardless of how we computed the matrix M , we know what we have to do to
find the solutions to the linear system: rref it!

EDU>> rref(M)

ans =

1.0000 0 -1.2463 0

0 1.0000 -1.4577 0

0 0 0 0

The value of ps is not constrained by any of the equations from the reduced row
echelon form, and so it is a free variable. Only once we have chosen a particular
value for ps can the values of pc and pe be computed. In general, though,
rref(M) tells us some interesting things about the nature of the solutions to this
system. For instance, regardless of the annual output from the steel industry,
for all industries to break even, the coal industry’s output must be 124.63% that
of the steel industry. Similarly, the electricity industry’s annual output must be
145.77% of the steel industries output. Even if there is not a unique solution to
a system of linear equations, we can often still tell quite a bit about what the
solution space looks like.

1.3.2 Application of inhomogeneous equations: network
flow and supply chain management

Figure 1.9: Graphical representation of a supply chain.

Imagine your business has a supply chain as depicted in figure 1.9. Arrows
pointing into the network represent units of raw goods entering the manufactur-
ing process, and arrows exiting the network represent goods going to consumers.
At each junction (mathematicians call them nodes or vertices), some goods come
in and some goods go out. For instance, at the top right node, we have 100 units
of raw materials, W units of one product, and V units of another product all
coming together to make Y units of the output product. Our key assumption
here is that at each node, the total number of units entering the node is the
same as the total number of units leaving the node. This way, we can write a
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system of linear equations, one for each node, that describes the relationships
between the products in the supply chain.

(in) = (out)

80 = v + z

100 + v + w = y

x = w + 90

y + z = 90 + x

By now we should be comfortable converting a linear system into its associated
matrix equation


−1 0 0 0 −1

1 1 0 −1 0

0 −1 1 0 0

0 0 −1 1 1



v

w

x

y

z

 =


−80

−100

90

90

 .

Notice that the matrix equation is inhomogeneous. We then produce the RREF
of the augmented matrix in order to learn about the solutions of the linear
system

>> rref([-1 0 0 0 -1 -80; 1 1 0 -1 0 -100; 0 -1 1 0 0 90; 0 0 -1 1 1 90])

ans =

1 0 0 0 1 80

0 1 0 -1 -1 -180

0 0 1 -1 -1 -90

0 0 0 0 0 0

Here we see that we have not one but two free variables, y and z. Let’s take a
closer look at the first equation of the RREF, v = 80− z. If we assume we can’t
have negative units of goods flowing through our supply chain, this equation
implies that z ≤ 80. Since v and z have a physical interpretation, their values
can be constrained even if one of them is a free variable. We can carry this
analysis a bit further by looking at the final nontrivial equation in the RREF,
x = y + z − 90. Since we decided z ≤ 80, we have x ≤ y − 10, and so y ≥ 10
even though y is technically a free variable.

It’s worth saying again: if linear systems in which the variables have some
sort of physical meaning, it’s often the case that variables which RREF would
indicate are completely free actually have constrained values due to the under-
lying assumptions of the linear system.
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1.4 Linear Independence

Let’s consider the supply chain diagram found in figure TODO. Units of prod-
ucts or raw materials move along each line in the graph, with the direction
of movement indicated by arrows and the number of units represented either
by a fixed quantity (e.g., 60, 70, 80) or a variable (e.g., x1, x2, . . . , x6). We
will call the product whose arrow is labeled by xi product i; for instance, the
top-most edge represents product 1. Arrows coming into the system represent
raw materials, and arrows going out of the system represent final goods going
to consumers. Internal arrows represent intermediate products that will either
be sold to end consumers or will be used as components in a new product. At
each lettered node, a new product is formed. For instance, at node C, we have
x2 units of a product 2 combine with 100 units of raw materials to form x3
units of product 3. We’ll also impose the constraint that all units, whether raw
materials or product, that go into a node, must come out. At node A, any units
of product 6 that have not been sold are recycled and combined with 60 units
of raw materials to restart the process with x1 units of product 1.

The question we’ll try to be answering here is this: what are internal pro-
duction levels x1, x2, . . . , x6 that need to be maintained in order to exactly
satisfy customer demand, represented by outgoing arrows, subject to raw mate-
rial availability, represented by incoming arrows? It seems like a natural enough
question from a business perspective. It would be wasteful to make more prod-
ucts than you can sell, and you certainly don’t want to have raw materials
you’ve purchased not going into products. But how do we go about trying to
solve something like this? And how can we be sure that there’s a solution at
all?

Let’s start by writing down what we know. We know that at each node,
for every unit of product that comes in, a unit of product must come out. So
at each lettered node, we can just equate the number of units coming in to
the number of units coming out. This gives us a system of linear equations in
x1, x2, . . . , x6.

x6 + 60 = x1

x1 = x2 + 70

x2 + 100 = x3

x3 = 90 + x4

x4 + 80 = x5

x5 = 80 + x6

↔



−1 0 0 0 0 1

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1





x1

x2

x3

x4

x5

x6


=



−60

70

−100

90

−80

80


.

We know by now that to solve this system of linear equations, we would just
rref it’s augmented matrix.

EDU>> rref([-1 0 0 0 0 1 -60; 1 -1 0 0 0 0 70; 0 1 -1 0 0 0 -100; ...

0 0 1 -1 0 0 90; 0 0 0 1 -1 0 -80; 0 0 0 0 1 -1 80])
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ans =

1 0 0 0 0 -1 60

0 1 0 0 0 -1 -10

0 0 1 0 0 -1 90

0 0 0 1 0 -1 0

0 0 0 0 1 -1 80

0 0 0 0 0 0 0

So x6 is a free variable, and there are infinitely many solutions to this linear
system. But what if we change the inputs just a little bit? For instance, imagine
61 units of raw materials comes into node A.

EDU>> rref([-1 0 0 0 0 1 -61; 1 -1 0 0 0 0 70; 0 1 -1 0 0 0 -100; ...

0 0 1 -1 0 0 90; 0 0 0 1 -1 0 -80; 0 0 0 0 1 -1 80])

ans =

1 0 0 0 0 -1 0

0 1 0 0 0 -1 0

0 0 1 0 0 -1 0

0 0 0 1 0 -1 0

0 0 0 0 1 -1 0

0 0 0 0 0 0 1

So this slightly different system has no solutions, because the rightmost column
contains a pivot. It may seem a little weird that making such a small change
in the assumptions of the model took us from infinitely many solutions to no
solutions. As it turns out, there’s a lot of relevant mathematics to describe why
this happens.

1.4.1 Counting solutions

Let’s start by thinking about perhaps the easiest linear system we can, Ax = 0.
The vector x = 0 is always a solution to this equation. Since it’s so easy to
satisfy the equality with this choice of x, we call x = 0 the trivial solution to
Ax = 0. A much more interesting question is whether there are any nonzero
solutions to the equation. But before we get into whether these exist, let’s talk
about why such a thing should be interesting.

Imagine that there are infinitely many k such that Ak = 0, and let’s as-
sume too that there is a vector q such that Aq = b for some fixed vector b.
Remembering our matrix arithmetic properties from section ??, we know that
A(k + q) = Ak + Aq = 0 + b = b. In words, if k + q is a solution to Ax = b,
too. So if there are infinitely many k such that Ak = 0, then there are infinitely
many x such that Ax = b provided that just one solution q exists. (Note that
if this initial q doesn’t exist, then none of the rest is true!)
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Let’s turn the tables and assume that there are infinitely many solutions to
Ax = b for the same fixed b. Choose just one of these and call it q, and let r
range over all solutions. By the same good old matrix arithmetic properties, we
have Aq−Ar = b−b = 0 and Aq−Ar = A(q−r) so that q−r is a solution to
Ax = 0. Since there are infinitely many choices for r, there must be infinitely
many solutions to Ax = 0.

But why are we bothering with this at all? Well, the previous two paragraphs
tell us that we can learn a lot about the number of solutions to Ax = b just
by looking at the solutions to the (much simpler) system Ax = 0. And for a
bonus, we have the nice property that rref([A|0]) = [rref(A)|0] since scaling
and adding rows can never change a rightmost column full of zeros. So here’s the
take away message: to determine how many solutions to Ax = b exist, a good
place to start is to look at rref(A). And why is this good again? Well, since
rref(A) is independent of the particular choice of b, we’re getting information
about all possible systems with coefficients described by A at the same time.

1.4.2 Rank

Let’s update our previous results about solutions to linear systems using the
new information we’ve just uncovered. A linear system Ax = b

• a unique solution if and only if the rref(A) has a pivot in every row and
column

• either no solution or infinitely many solutions if rref(A) otherwise

This formulation seems to imply that the number of pivots in rref(A) is an
important quantity in determining how many solutions a linear system has.
In fact, it’s so important it gets its own name. We call the number of pivots
contained in rref(A) the rank of A, denoted rank(A). The Matlab command
to compute the rank of the coefficient matrix A is just rank(A). We can use the
coefficient matrix from our supply chain network as an example.

EDU>> rank([-1 0 0 0 0 1; 1 -1 0 0 0 0; 0 1 -1 0 0 0; ...

0 0 1 -1 0 0; 0 0 0 1 -1 0; 0 0 0 0 1 -1])

ans =

5

Note that since each row can contain at most one pivot, for a r × c coefficient
matrix A, we have rank(A) ≤ r. Similar reasoning applied to columns shows
that rank(A) ≤ c. Some interesting results follow from this.

• the linear system Ax = b has a unique solution if and only if r = c =
rank(A)

• if c > r ≥ rank(A), then the linear system Ax = b must have free
variables and therefore has infinitely many solutions.
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But what about the remaining case where r > c ≥ rank(A)? Well, this case
covers a lot of ground, and we could have any one of the three types of solution
spaces: unique solution, no solution and infinitely many solutions. For a unique
solution, consider the linear system1 2

4 5

2 4

[x1
x2

]
=

3

6

6


A1x = b1

We can compute the solution to this system in Matlab.

EDU>> rref([1 2 3; 4 5 6; 2 4 6])

ans =

1 0 -1

0 1 2

0 0 0

Notice that rank(A1) = 2, and that the system has a unique solution x1 =
−1, x2 = 2.

For the no solution case, consider slightly altering the vector b1.1 2

4 5

2 4

[x1
x2

]
=

3

6

7


A0x = b0

Again, we compute the solution in Matlab.

EDU>> rref([1 2 3; 4 5 6; 2 4 7])

ans =

1 0 0

0 1 0

0 0 1

While rank(A0) = rank(A1) = 2, we now have an inconsistency in the system,
captured in the third row of the reduced row echelon form of the augmented
matrix.

For the infinitely many solutions case, consider the system1 2

2 4

3 6

[x1
x2

]
=

3

6

9


A∞x = b∞
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We still have rank(A∞) = rank(A0) = rank(A1) = 2, but now the reduced row
echelon form of the augmented matrix is

EDU>> rref([1 2 3; 2 4 6; 3 6 9])

ans =

1 2 3

0 0 0

0 0 0

Notice that x2 is now a free variable, and so the system has infinitely many
solutions.

1.4.3 Linear independence

There’s another way to think about the non-trivial solutions of Ax = 0. We say
that a collection of two or more vectors v1,v2, . . . ,vc are linearly independent
if  | | · · · |

v1 v2 · · · vc

| | · · · |



x1

x2
...

xc

 = 0

has only the trivial solution. If there exists a nontrivial linear combination of
the columns equalling 0, then we say the vectors are linearly dependent. Using
linear independence terminology, our results concerning the solutions of the
system Ax = b with A a r × c matrix become

• has a unique solution if r = c and the columns of A are linearly indepen-
dent

• if the columns of A are linearly dependent, then the system has infinitely
many solutions

• if the columns of A are linearly independent and r > c, then the system
has either infinitely many solutions or no solution.

1.4.4 Span

We say that a vector b is in the span of the vectors v1,v2, . . . ,vc if the linear
system

 | | · · · |
v1 v2 · · · vc

| | · · · |



x1

x2
...

xc

 = b
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has at least one solution. We call the collection of all such b the span of
v1,v2, . . . ,vc. Said a different way, the linear system Ax = b has at least
one solution if and only if b lies in the span of the columns of A.

A linear system Ax = b with A an n×n matrix has a unique solution if and
only if

• Ax = 0 has only the trivial solution

• rank(A) = n

• A has n linearly independent columns

• the span of the columns of A is Rn
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2.1 Leontief Input-Output Model

We’ve already seen examples of supply networks in which product A is both used
to make product B and is sold itself directly to the consumer. We can formalize
these notions by calling the former intermediate demand and the latter final
demand. Let’s investigate systems featuring intermediate and final demands in
a slightly different context than supply chain networks.

Imagine we have two industries, manufacturing and services, and suppose
that in order to make 1 unit of output, the manufacturing sector must consume
0.4 units of its own output, and 0.2 units of service industry output. (Here
“units of output” could be measured in whatever way we want so long as the
measurement method is consistent across the industries.) Similarly, suppose
that in order to make 1 unit of output, the services industry must consume 0.7
units of the manufacturing industries output, and 0.1 units of its own output.
Let x1, x2 be the number of units produced by the manufacturing and services
industries, respectively. Then the intermediate demand necessary to create these
units out production is [

0.4 0.7

0.2 0.1

][
x1

x2

]

Suppose now that we introduce a final demand vector d representing the number
of units of production of both the manufacturing and services industry that are
demanded not by other industries, but by the public at large. Ideally, the total
number of units produced by both industries must be equal to the sum of the
intermediate and final demands; this is just the familiar idea of supply equaling
demand in equilibrium. Mathematically, we can express this idea as follows

[
x1

x2

]
=

[
0.4 0.7

0.2 0.1

][
x1

x2

]
+

[
d1

d2

]
x = Cx + d

Suppose that we have somehow measured of estimated the demands contained
in d, and we’re trying to determine our ideal production levels x. Rearranging
the equation a little bit gives

x = Cx + d

(I − C)x = d.

This type of linear system is called a Leontief input-output model.
In the past, we’ve solved systems of linear equations like this input-output

model using a rref in Matlab. We know how to interpret the results of this
computation in terms of unique solutions, free variables and all the rest. But
rref isn’t an ideal solution generally for a couple of reasons. First, an individual
rref computation doesn’t help us do another rref computation more efficiently;
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for a different demand vector d′, we would simply repeat the entire process.
Second, rref is almost useless in a theoretic context; sometimes, like it or
not, pushing symbols around leads to serious discoveries about fundamental
properties of a given system. Here’s my claim: it would be great if we could
find a matrix A such that

A(I − C)x = Ad

Ix = x = Ad.

If you think about it, this is exactly what’s happening every time you solve for
x in an equation involving only real numbers. For instance when solving the
equation 7x = 14, you find a number a such that a · 7x = 1x = x, namely
a = 1/7. While it’s true that such an inverse element a will exist over the real
numbers, it’s not the case that an inverse element will always exist when we’re
dealing with matrices. If the inverse of a matrix C exists, we denote it C−1.
Just as if real numbers, the matrix C−1 satisfies C−1C = I = CC−1.

But you might already have some issues with this concept. For instance,

• What does AB mean when A and B are matrices? How do define matrix-
matrix multiplication? Is it related to the concept of matrix-vector mul-
tiplication that we’ve already seen?

• For a matrix C, does the inverse C−1 exist? How can we know if it does
or doesn’t?

• If the inverse C−1 does exist, how can we compute it? We want concepts
we can use, and if we can’t compute the inverse, we can’t put it to use.

We’re going to deal with each of these issues in turn, and by the end, we’ll have
solid answers for each question.

2.1.1 Matrix-matrix multiplication

Suppose that A is a r × n matrix and B is a n × c matrix with columns
b1,b2, . . . ,bc. The matrix multiplication of A and B is defined as

AB = A
[
b1 b2 . . . bc

]
=
[
Ab1 Ab2 . . . Abc

]
.

The product AB will be r × c. Notice that matrix-matrix multiplication AB
makes sense only if AB has dimensions (r×n)(n× c) so that the “inner dimen-
sions” of A and B are identical.

Reading Check 22: Verify the previous two claims.

Matrix-matrix multiplication in Matlab is easy: just enter each matrix as you
normally would and place a * in between. In all the following examples, before
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actually doing the matrix multiplication AB in Matlab or by hand, determine
what the dimensions of the product will be.

Example 5: A =

[
1 2

3 −4

]
, B =

[
7 3 −1

−2 4 9

]

Example 6: A =

 7 −2

4 3

−1 9

 , B =

[
3 5

1 2

]

Example 7: A =
[
1 2 3

]
, B =

4

5

6


Example 8: A =

[
1

2

]
, B =

[
3 4 5

]
You may have noticed that the last two examples were especially strange.

In Example 2.1.1, we took two vectors and produced a scalar (i.e., a single
number). This is known as the inner product of the vectors. The inner product
of vectors v and w is usually denoted v ◦w or < v,w >. In Example 2.1.1, we
took two vectors and produced a matrix. This is known as the outer product
of the vectors. The standard notation for the outer product of vectors v and
w is v ⊗w. We’ll see both of these concepts in the course, but we can use the
inner product right away. We can define matrix multiplication another way by
saying that the (i, j) entry of matrix AB is the inner product of row i in A and
column j in B.

Reading Check 23: Verify that the previous claim is true.

Matrix multiplication might be the first time in a person’s mathematical life
that arithmetic starts getting a little strange. But before we get to all the weird
stuff, let’s enumerate some things in matrix multiplication that work the same
way they do in multiplication of real numbers:

1. A(BC) = (AB)C (associativity)

2. A(B + C) = AB +AC (left distributivity)

3. (A+B)C = AC +BC (right distributivity)

4. IrA = A = AIc assuming A is r × c(identity)

But there are some things that don’t work the way we might expect, too.

1. In general, AB 6= BA. (non-commutative)

2. In general, AB = AC does not imply that B = C.

3. In general, AB = 0 does not imply that A = 0 or B = 0.



2.1. LEONTIEF INPUT-OUTPUT MODEL 43

The one to really worry about the most is the first one. We can’t just rearrange
the order in a product. We won’t dwell on these too long since you’ll be doing
a problem about each of these.

Let’s use our knew knowledge of matrix multiplication to do a quick example
about inverses.

Example 9: Show that CD = DC = I2, so that D = C−1, where

C =

[
5 3

3 2

]
, D =

[
2 −3

−3 5

]
.

Example 10: Show that EF = FE = I2, so that E = F−1, where

E =

[
7 2

3 1

]
, D =

[
1 −2

−3 7

]
.

Before we dive into computing the inverse of a matrix, let’s gather up some
preliminary results. For now, let’s consider an arbitrary r × c matrix A. Gen-
erally speaking, the matrix A takes a vector of length c and produces a vector
of length r. Another way of saying this is that the domain of C is Rc and the
range is Rr. Remember, for an inverse of A to exist, we need Ax = b to have
a unique solution x ∈ Rc for every bRr. Also remember that there can be at
most one pivot per row and at most one pivot per column.

Suppose c > r. Then since there is at most one pivot per row, there exists
some column without a pivot. Then A has a free variable, and so Ax = b has
infinitely many solutions for some b ∈ Rr. So A cannot have an inverse.

Suppose c < r. Then since there is at most one pivot per column, there
exists some row without a pivot. Then rref(A) has a row of all zeros, and so
Ax = b has no solution for some b ∈ Rr. And so A cannot have an inverse here
either.

Reading Check 24: Make sure you believe the following two paragraphs. It
might help to make some small examples if you’re still in doubt.

Combining the two previous paragraphs, we can say that for a matrix A to
have any hope of having an inverse, it must be the case that c = r. In this case,
we call A a square matrix.

But even if A is n× n, we can still run into problems. For a ridiculous case,
imagine that A is a square matrix containing all zeros. Then A maps every input
vector x to the output vector y = 0. So clearly A is not a one-to-one mapping
in this case. We’ve seen that in general if the columns of A are not linearly
independent, then rref(A) contains a free variable, and so there are some y
in the range of A which have infinitely many solutions x satisfying Ax = y.
Hence, if the columns of A are linearly dependent, then A is not an one-to-one
mapping, and hence there can be no inverse for A.



44 CHAPTER 2. INPUT-OUTPUT MODELS AND INVERTIBILITY

So suppose that the columns of A are linearly independent. Then Ax = 0
has only the trivial solution, and so rref(A) can have no free variables. Since A
is square, this implies that rref(A) is an identity matrix. Therefore, for every
b ∈ Rn, there is a unique solution x such that Ax = b. This is exactly what
we want in order for the inverse of A to exist!

So we can add the existence of a matrix inverse to our list of equivalent
conditions concerning linear independence of the columns of a matrix. Here we
assume that A is n× n.

• The equation Ax = b has a unique solution x for every b ∈ Rn.

• The equation Ax = 0 has only the trivial solution x = 0.

• The columns of a A are linearly independent.

• rref(A) contains no free variables.

• A has n pivots.

• The inverse A−1 exists.

So far we have determined what matrix-matrix multiplication is and how
to tell whether a matrix A has an inverse. But how do actually construct the
matrix inverse?

2.2 The matrix inverse

2.2.1 Building intuition

Before we get into the nitty gritty, let’s try to form a hypothesis about what a
matrix inverse of a 2× 2 matrix A will look like. In Matlab, try

EDU>> A = [5 3; 3 2]

A =

5 3

3 2

EDU>> A^(-1)

What do you see? How are the entries of A−1 related to the entries of A?
Next try

EDU>> A = [3 1; 5 2]

A =

3 1
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5 2

EDU>> A^(-1)

Does your hypothesis from the first example fit the second example?
One last example:

EDU>> A = [4 7; 2 4]

A =

4 7

2 4

EDU>> A^(-1)

How is your hypothesis holding up now? If it failed, can you revise it to make
sense of all three examples?

2.2.2 A first matrix inverse

So far we know that a matrix inverse of A exists if and only if A is square and
has linearly independent columns. But this doesn’t help much with the actual
computation. Consider the general 2× 2 matrix

A =

[
a b

c d

]
.

Let’s make two observations:

A

[
1

0

]
=

[
a

c

]

A

[
0

1

]
=

[
b

d

]
If A−1 exists, we can multiply both sides of both equations by A−1 on the left.

A−1A

[
1

0

]
= A−1

[
a

c

]

A−1A

[
0

1

]
= A−1

[
b

d

]
.

To find out what A−1 actually is, let’s first define its components and then solve
for them using the relations we just found. Let

A−1 =

[
e f

g h

]
.
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Remember, we’re given A, so we know exactly the values of a, b, c and d. We
don’t know e, f, g or h; these are variables. Our relations from above become

A−1

[
a

c

]
=

[
e f

g h

][
a

c

]
=

[
1

0

]
[
ae+ cf

ag + ch

]
=

[
1

0

]
and

A−1

[
a

c

]
=

[
e f

g h

][
b

d

]
=

[
0

1

]
[
be+ df

bg + dh

]
=

[
0

1

]
We have 4 equations in the variables e, f, g and h. We can gather these up in
to a single system of linear equations.[

ae+ cf

ag + ch

]
=

[
1

0

]
[
be+ df

bg + dh

]
=

[
0

1

]

⇒


a c 0 0

0 0 a c

b d 0 0

0 0 b d



e

f

g

h

 =


1

0

0

1

 .
We can use a tool like WolframAlpha to solve this system. We find

e =
d

ad− bc

f =
−b

ad− bc

g =
−c

ad− bc
h =

a

ad− bc
.

But remember, the whole point of this exercise was to find the components of
the inverse matrix A−1. We can now just read them off.

A−1 =

[
e f

g h

]

=
1

ad− bc

[
d −b
−c a

]
.
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We call ad− bc the determinant of A, denoted det(A). Notice that the inverse
of A that we’ve computed here only makes sense if det(A) 6= 0.

Reading Check 25: Show that we’ve found is accurate by computing AA−1

and A−1A.

Notice that the same type of reasoning used in computing the inverse of a
given 2× 2 matrix could be used to explicitly construct the inverse of any n×n
matrix!

Reading Check 26: Find the inverse of the arbitrary 3× 3 matrix

A =

a b c

d e f

g h i



2.2.3 Computing production

Now that we have the inverse of an arbitrary 2× 2 matrix, computing the total
production necessary to satisfy the demand in a Leontief input-output model
should be a piece of cake. For instance, imagine that the total demand is 100
units from the manufacturing industry and 200 units from the services industry.
Then our matrix equation looks like([

1 0

0 1

]
−

[
0.4 0.7

0.2 0.1

])[
x1

x2

]
=

[
100

200

]
Ax = d

So we first need to compute A−1 and then multiply by d. Since we’ve already
done the tough stuff, we can literally just substitute values in order for find the
inverse.

A−1 =
1

(0.6)(0.9)− (0.7)(0.2)

[
0.9 0.7

0.2 0.6

]

= 2.5

[
0.9 0.7

0.2 0.6

]

=

[
2.25 1.75

0.5 1.5

]

Not so bad, right? But a lot of times, things don’t work out so neatly. In those
cases, it’s usually better just to use Matlab. We can compute the inverse of A
using Matlab in a couple different ways.
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EDU>> A = eye(2) - [0.4 0.7; 0.2 0.1]

A =

0.6000 -0.7000

-0.2000 0.9000

EDU>> inv(A)

ans =

2.2500 1.7500

0.5000 1.5000

EDU>> A^(-1)

ans =

2.2500 1.7500

0.5000 1.5000

All three methods agree, so we know we’re doing everything correctly. So to
compute the number of units needed to satisfy demand d, we just need to
multiply.

>> d = [100;200]

d =

100

200

>> inv(A) * d

ans =

575.0000

350.0000

So the manufacturing industry and service industry must produce 625 units and
100 units, respectively, in order to satisfy both intermediate and final demand
exactly. This type of operation comes up so frequently that Matlab has provided
an even easier way to compute x = A−1d.

>> A \ d

ans =
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575

350

Notice that this is a backslash, not forward slash as we typically use in division!

2.2.4 Consequences of linearity to sensitivity

How does the production solution change if the final demand from industry 2
increases by 1 unit? Well,

EDU>> (eye(2) - C) \ [100;201]

ans =

576.7500

351.5000

In words, we need 576.75 total units from industry 1 and 351.5 total units from
industry 2. Combining the two preceding results, we can write a numerical form
of the change in production associated with an increase in final demand from
industry 2 of 1 unit:

∆x2 =

[
0.6 −0.7

−0.2 0.9

]−1 [
100

201

]
−

[
0.6 −0.7

−0.2 0.9

]−1 [
100

200

]

=

[
576.75

351.5

]
−

[
575

350

]

=

[
1.75

1.5

]
.

We can think of ∆x2 as the sensitivity of production to changes in final demand
of output from industry 2. But this sensitivity information is contained within
the inverse of I − C. We can see this by developing the original expression for
∆x2 along a different track.

∆x2 =

[
0.6 −0.7

−0.2 0.9

]−1 [
100

201

]
−

[
0.6 −0.7

−0.2 0.9

]−1 [
100

200

]

=

[
0.6 −0.7

−0.2 0.9

]−1([
100

201

]
−

[
100

200

])

=

[
0.6 −0.7

−0.2 0.9

]−1 [
0

1

]
.

So the change in production associated with an increase of 1 unit of final demand
of product 2 is the second column of the matrix (I − C)−1.
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Reading Check 27: Convince yourself that for any r × c matrix A, the ma-
trix multiplication A[0, . . . , 0, 1, 0, . . . , 0]T , where the single 1 is located in the
jthcomponent, 1 ≤ j ≤ c, returns the jth column of A.

A simple Matlab computation of (I − C)−1 confirms that the two interpre-
tations are identical.

EDU>> inv(eye(2) - C)

ans =

2.2500 1.7500

0.5000 1.5000

Notice that this is general, meaning we could repeat a similar procedure and
determine the additional production necessary to accommodate 1 additional
unit of demand from any of the industries, and that this additional production
would appear as a column of the inverse of (I − C).

2.2.5 Parameterized Leontief input-output models

The Leontief input-output model that we considered previously took the form[
x1

x2

]
=

[
0.4 0.7

0.2 0.1

][
x1

x2

]
+

[
d1

d2

]
x = Cx + d,

where x represented the number of units produced of each good, and d repre-
sented the final demand. Just so we have some terminology to throw around,
remember that we called Cx the intermediate demand.

We reframed the idea of finding a specific production level x that would
perfectly satisfy demand as a matrix inverse problem, in particular the problem
of finding the inverse of the matrix I − C.

Just as in our investigations of eigenvalues and eigenvectors, it is often a
productive exercise to think of one of the entries of C as a tunable parameter.
This serves two functions: first, it let’s us represent uncertainty as to the exact
values of the matrix C. Remember, the (i, j) entry of C represents the number
of units of product i that are necessary to produce 1 unit of product j.

Reading Check 28: Remind yourself why the preceding statement is true.

We could easily imagine that this value fluctuates or is not known defini-
tively, and so having some control over the value of the (i, j) entry of C could
give us some information about how the system behaves as various intermedi-
ates demands change. Another reason to introduce tunable parameters is more
mathematical: generalizing the matrix C will help us build intuition about when
and how inverses exist or fail to exist.
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Let’s consider an input-output model where the number of units of product
1 necessary to make 1 unit of product 2 is represented by the variable k. Since
an industry should be adding value by creating a new product, it’s safe to
assume that k < 1, and since it doesn’t make sense to have negative values of
production, we can also feel good about bounding k ≥ 0. Our model now takes
the form [

x1

x2

]
=

[
0.4 k

0.2 0.1

][
x1

x2

]
+

[
d1

d2

]
x = Ckx + d,

Here’s a natural question: for what values of k does there exist a unique pro-
duction level that satisfies final demand exactly? Mathematically, we’re asking
ourselves the following question: for what values of k does an inverse of I −Ck
exist.

We have many different and equivalent ways that characterize whether the
inverse of a particular matrix exists. In some ways, the only real mathematics
involved in the process of determining whether an inverse exists or not is having
some insight into which formulation will give use the easiest route to determin-
ing the existence of the inverse. For instance, we could try to prove that the
determinant of the matrix is nonzero. Or, alternatively and equivalently, we
could try to prove that the columns of the matrix are linearly independent. Or
we could try to prove that the kernel of the matrix contains only the zero vector.
All of these (and more) and perfectly valid, but one or more will usually prove
to be easier than the others.

Since computing the determinant of a 2× 2 matrix is easy, let’s start there.
Remember, we’re trying to investigate the matrix I −Ck, not just Ck itself. So
the question becomes this: for what values of k does the following statement
hold:

det

([
1 0

0 1

]
−

[
0.4 k

0.2 0.1

])
6= 0

Simplifying the matrices first and then taking the determinant gives

det(I − Ck) = (0.6)(0.9)− (0.2)k.

Reading Check 29: Verify the previous claim.

Notice that the determinant is linear in k, and hence there will be one
and only one value of k for which det(I − Ck) equals any given value, and in
particular only one value of k for which the determinant is zero. A little bit of
mathematical elbow grease will give us our answer.

0 = .54− .2k
k = 2.7.
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Bringing this result back to the context of the problem, there will exist a unique
production level which uniquely satisfies any final demand vector d so long as
k 6= 2.7.

Reading Check 30: Repeat the following procedure assuming that the (2,1)
entry of C is unknown.

It’s not much of a stretch to imagine that a different entry in the matrix C
is unknown. For instance, let’s imagine that entry (2,2) of C is unknown. In
terms of our model, this means that we’re unsure how many units of product 2
will be recycled to make a single unit of product 2. Our model now takes the
form [

x1

x2

]
=

[
0.4 0.7

0.2 k

][
x1

x2

]
+

[
d1

d2

]
x = Bkx + d,

(Note: I’m using Bk here just to clearly denote that the matrix we’re considering
here is not exactly the same as the Ck considered before.) Again, let’s deter-
mine when the inverse of I − Bk by using determinants. Here the determinant
condition for invertability takes the form

det

([
1 0

0 1

]
−

[
0.4 0.7

0.2 k

])
6= 0

Simplifying and performing the determinant computation gives

det(I −Bk) = (0.6)(1− k)− (0.7)(0.2)

Again, the determinant is linear in k, and so there is one and only one value of
k for which I −Bk is not invertible:

0 = (0.6)(1− k)− (0.7)(0.2)

k = 1− 0.14

0.6
≈ 0.77

Reading Check 31: Verify the previous computation.

Here, the computed value of k certainly does lie within the bounds we set
up earlier. In other words, this value of k could conceivably come up in the
real world. But what would it mean if it would? Remember, systems of linear
equations either have a unique solution, no solution or infinitely many solutions.
We’ve just proved that if k in this situation has a particular value, then it is
definitely the case that the a unique solution to the Leontief input-output model
does not exist. Therefore, we can conclude that there are either infinitely many
production levels that perfectly satisfy a given final demand, or no production
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level that perfectly satisfies a given final demand. Which situation actually
occurs completely depends on the given final demand.

How about a more difficult example? Consider a 3 industry Leontief input-
output model of the formx1x2

x3

 =

0.3 0.2 0.4

0.3 0.5 0.4

0.3 0.2 k


x1x2
x3

+

d1d2
d3


x = Ckx + d.

As with the previous example, there are a lot of different ways that we could
determine when I − Ck. It’s tough to say which is going to be the easiest, but
let’s try to start with analyzing the determinant condition. But we’ve never
talked about how to take the determinant of a 3× 3 matrix by hand! Have no
fear! WolframAlpha eats problems like this for breakfast. Let’s try entering the
following statement into WolframAlpha:

det IdentityMatirx[3]-{{0.3, 0.2, 0.4},{0.3, 0.5, 0.4},{0.3, 0.2, k}}

Now, we could’ve used the statement

det {{1-0.3, -0.2, -0.4},{-0.3, 1-0.5,-0.4},{-0.3, -0.2, 1-k}}

You might think one or the other is a little better. Regardless of which one we
end up choosing, the result is

det(I − Ck) = 0.126− 0.29k.

Then the determinant condition of invertibility tells us that I − Ck is non-
invertible if and only if

0 = 0.126− 0.29k

k ≈ 0.434.

Now, for the grain of salt. We’ve shown that a matrix inverse of I − Ck
fails to exist if and only if k is one particular value. In the real world, such a
narrow window of badness is very rarely realized. That being said, sometimes
very weird things can happen if a matrix is “close” to be non-invertible. In
other words, we could see strange behavior of our production levels if k is very
near the point at which a matrix inverse fails to exist. The point here is that
we as mathematically oriented business people need to be aware of the failures
of our models and do our best to mitigate those failures.

2.3 Leontief price equation

Let’s imagine that industry i charges pi dollars (or other unit of currency) for
each unit of its output. Considering a Leontief system with 2 different industries,
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we can bundle these prices into a price vector p, where the ith component
of p is pi, the price charged by industry i for 1 unit of its output. For a
concrete example, let’s go back to the manufacturing and services example that
we investigated previously. Remember, this model took the form

[
x1

x2

]
=

[
0.4 0.7

0.2 0.1

][
x1

x2

]
+

[
d1

d2

]
x = Cx + d

Imagine now that industry 1 (manufacturing) charges $200 per unit of its output,
and industry 2 (services) charges $100 per unit of its output. Since industry
1 requires 0.4 units of output from industry 1 and 0.2 units of output from
industry 2, industry 1 incurs a total cost of (0.4)(200) + (0.2)(100) in order to
make one unit of output. We can write this in symbols, too.

(0.4)(200) + (0.2)(100) =
[
0.4 0.2

] [200

100

]

Similarly, we could write the cost incurred to make a single unit of output from
industry 2 as

(0.7)(200) + (0.1)(100) =
[
0.7 0.1

] [200

100

]

In fact, we can bundle up these costs into a single matrix-vector quantity.

[
0.4 0.2

0.7 0.1

][
200

100

]

But notice that the matrix here is the matrix C “flipped” somehow. We’ve
turned the rows of C into the columns of this new matrix. As it turns out, this
is a very common operation in linear algebra, and we’ll see that it leads to all
sorts of interesting properties and applications.

2.3.1 The matrix transpose

To get started a little more formally, given a matrix A, the matrix transpose
AT is formed by taking the first column of A as the first row of AT , the second
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column of A as the second row of AT and so on. Here’re some examples:

A =
[
1 2 3 4

]
, AT =


1

2

3

4



A =

1 2

3 4

5 6

, AT =

[
1 3 5

2 4 6

]

A =

[
1 2

3 4

]
, AT =

[
1 3

2 4

]

I =


1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 1

, IT = I

The transpose has all sorts of interesting properties. Let’s start with some
simpler ones. For instance, (AT )T = A. If A and B are matrices (or vectors)
of the same size, then (A + B)T = AT + BT . Scalar multiplication also works
well with the transpose, in the sense that (cA)T = cAT for any scalar c. But
there are properties of transposition that aren’t so intuitive. For instance, given
suitably sized matrices A and B, we have (AB)T = BTAT . To see why this is
true, we’ll need to use our definition of matrix multiplication: remember that
AB(i, j) is < (ith row of A), (jth column of B) >. Then

(AB)T (i, j) =< (jth row of A), (ith column of B) >

=< (ith row of BT ), (jth column of AT ) >

= BTAT (i, j)

Example 11: Let

A =

[
1 2 3

4 5 6

]
, B =

1 3

5 7

9 11

 .
Let’s confirm that (AB)T (1, 2) = (BTAT )(1, 2). Since rows and columns swap
in transposition, (AB)T (1, 2) = AB(2, 1). So (AB)T (1, 2) is the inner product
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of row 2 from A and column 1 from B

(AB)T (1, 2) =
[
4 5 6

]1

5

9


= 4 + 25 + 54 = 83.

For the other side, we have (BTAT )(1, 2) is the inner product of the row 1 of
BT and column 2 of AT . But notice that row 1 of BT is the same as column 1
of B, and column 2 of AT is the same as row 2 of A. So

(BTAT )(1, 2) =
[
1 5 9

]4

5

6


= 4 + 25 + 54

83.

We could repeat this same procedure to prove that (AB)T and BTAT are component-
wise equal.

Using the previous two properties, we can actually determine the exact form
of the inverse of AT provided that it exists. To see how this works, let’s first
assume that a matrix A has an inverse A−1. Then maybe there’s an inverse of
AT , too. If AT has an inverse B then

BAT = I

(BAT )T = IT

(AT )TBT = I

ABT = I

BT = A−1I

B = (A−1)T

In other words, the inverse of the transpose is the transpose of the inverse of A.
In symbols, (AT )−1 = (A−1)T .

2.3.2 Computing solutions

Now, cost is only part of any economic equation. What we’re really interested
in is what price each industry needs to charge in order to cover depreciation, the
wages of its employees, etc. and also make a fixed amount of profit. We’ll be
measuring all of these quantities per unit of output. (This is important, because
it allows us to make fair comparisons.) All together, the wages, depreciation,
profit, etc. can be summed into a single number: the added value vi of industry
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i. Bundling up the added values of every industry, we can form an added value
vector v. Then given a consumption matrix C and a value added vector v, we
would like to find at price vector p such that

p = CTp + v.

How does this equation mean? Well, here the prices of 1 unit of output from
each industry have been set so that every industry exactly covers both its costs
incurred from buying other industries’ goods, represented by CTp, and its added
value. But how can we find such a special price vector? We can follow a similar
path as we did in the original Leontief model.

(I − CT )p = v.

If the matrix (I − CT ) is invertible, then

p = (I − CT )−1v.

Let’s revisit our two industry example, but this time, rather than using a
fixed price vector, let’s imagine having a fixed value added vector v = [50, 25]T .

Reading Check 32: Describe in words what v means in terms of quantities
from our two industry model.

Then our price equation takes the form

p = CTp + v

p =

[
0.4 0.2

0.7 0.1

]
p +

[
50

25

]
([

1 0

0 1

]
−

[
0.4 0.2

0.7 0.1

])
p =

[
50

25

]
Just as a refresher, let’s remind ourselves how to solve this system of linear

equations the old way, that is, the way we solved systems of linear equations
before we knew about the concept of inversion. Short story: rref the augmented
matrix.

EDU>> rref([.6 -.2 50; -.7 .9 25])

ans =

1 0 125

0 1 125

But if we had a bigger matrix, this might be a little bit of a pain. If we’re sure
that I − CT has an inverse, we can compute the solution price vector p using
matrix inversion. But before we do, we need to learn how to take the transpose
of a matrix in Matlab. Fortunately for everyone involved, this is pretty easy
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EDU>> C = [0.4 0.7; 0.2 0.1]

C =

0.4000 0.7000

0.2000 0.1000

EDU>> C’

ans =

0.4000 0.2000

0.7000 0.1000

The symbol to do the transpose, in case it’s unclear, is the single quote. You
can also type help transpose in Matlab to learn more about the syntax.

Now we’re ready to actually do our matrix inversion. Remember that there
are two ways to do this in Matlab. The first way looks a lot like what we would
write analytically:

EDU>> inv(eye(2) - C’) * [50;25]

ans =

125

125

The second looks a little bit different, and more like division notation than
inverse notation.

EDU>> (eye(2) - C’) \ [50;25]

ans =

125.0000

125.0000

Regardless of how you get to this point, we’ve concluded that for the manufac-
turing and service industries to have added values of $50 and $25 per unit of
output, respectively, then both should charge $125 dollars per unit of output.

2.3.3 Consequences of linearity to sensitivity

Using the same example we’ve been working with, let’s imagine that the value
added per unit in industry 1 is v1 = 17 and the value added per unit in industry
2 is v2 = 24. What are the appropriate prices given all of our assumptions?
Matlab can crunch this type of thing, no problem:
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EDU>> C = [0.4 0.7; 0.2 0.1]

C =

0.4000 0.7000

0.2000 0.1000

EDU>> (eye(2) - C’) \ [17;24]

ans =

50.2500

65.7500

So for all industries to be simultaneously satisfied, industry 1 should sell 1 unit
of its output for $50.25 and industry 2 should sell 1 unit of its output for $65.75.
(Side note: If you’re more comfortable simplifying the matrix expression before
you put it into Matlab, that’s totally fine. Myself, I’m pretty bad at arithmetic,
so when there’s a chance, I let Matlab do it for me.)

Now, what happens to the price solution if the value added per unit of
industry 1 changes slightly from v1 = 17 to v1 = 18 while the value added per
unit in industry 2 remains constant at v2 = 24?

EDU>> (eye(2) - C’) \ [18;24]

ans =

52.5000

67.5000

So for all industries to be simultaneously satisfied, industry 1 should sell 1 unit
of its output for $52.25, and industry 2 should sell 1 unit of its output for $67.50.
Combining the previous results, we can write an expression for the change in
prices when the value added of industry 1 is increased by 1.

∆p1 =

[
0.6 −0.7

−0.2 0.9

]−1 [
18

24

]
−

[
0.6 −0.7

−0.2 0.9

]−1 [
17

24

]

=

[
52.50

67.50

]
−

[
50.25

65.75

]

=

[
2.25

1.75

]
We can think of this vector as the sensitivity of the prices of each industry to
changes in the value added per unit of industry 1. The larger the absolute values
of the entries of this vector ∆p1, the bigger the changes in price when industry
1 changes its value added just a little bit.
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The really surprising thing is the this price change information is encoded
in the matrix (I − CT )−1! To see this, let’s start with the identical first line
above and follow a different mathematical course:

∆p1 =

[
0.6 −0.7

−0.2 0.9

]−1 [
18

24

]
−

[
0.6 −0.7

−0.2 0.9

]−1 [
17

24

]

=

[
0.6 −0.7

−0.2 0.9

]−1([
18

24

]
−

[
17

24

])

=

[
0.6 −0.7

−0.2 0.9

]−1 [
1

0

]
.

But for any matrix A, the matrix multiplication A[1, 0, . . . , 0]T returns the first
column of A. And so ∆p1 is the first column of the matrix (I − CT )−1.

Simply computing the inverse of I−CT shows us that our analysis is correct.

EDU>> inv(eye(2) - C’)

ans =

2.2500 0.5000

1.7500 1.5000

This is a good place to note that only the difference of the value added vectors
mattered in the preceding computations; their absolute levels make absolutely
no impact.

Reading Check 33: Repeat the preceding steps using the value added vectors
v = [1, 2000]T and v′ = [1, 2001]T in order to show that the second column of
(I−CT )−1 represents the sensitivity of prices to changes in the value added per
unit of industry 2.

2.3.4 Convenient properties

If we are concerned about both the production and the prices in a Leontief
model, we can use one of our transpose properties to make this solving even
simpler. Notice that

(I − CT )−1 = (IT − CT )−1

= ((I − C)T )−1

= ((I − C)−1)T

Let’s see an example.

EDU>> C
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C =

0.2000 0.5000 0.1000 0.3000

0.4000 0.1000 0.4000 0.4000

0.1000 0.1000 0.1000 0.1000

0.2000 0.2000 0.3000 0

EDU>> inv((eye(4) - C’))

ans =

3.5516 2.6187 0.8511 1.4894

2.7823 3.3879 0.8511 1.4894

2.4386 2.5968 1.8440 1.5603

2.4223 2.4004 0.7801 2.1986

EDU>> inv((eye(4) - C))

ans =

3.5516 2.7823 2.4386 2.4223

2.6187 3.3879 2.5968 2.4004

0.8511 0.8511 1.8440 0.7801

1.4894 1.4894 1.5603 2.1986

This means that if we have computed (I−C)−1 to solve x = Cx+d then we
can easily compute (I − CT )−1 (by simply taking the transpose of (I − C)−1)
in order to solve p = CTp + v. Moreover, if since the sensitivity of prices to
changes in value added is related to the columns of (I − CT )−1), we could also
determine the sensitivity of prices to changes in value added by looking the rows
of (I − C)−1.

For instance, given

C =


0.2 0.5 0.1 0.3

0.4 0.1 0.4 0.4

0.1 0.1 0.1 0.1

0.2 0.2 0.3 0

 .
What is the sensitivity of the price of product 3 to change in value added
of product 2 of 1 dollar per unit? Well, from earlier work, we know that the
sensitivity of all prices to changes in value added of product 2 is given by column
2 of (I − CT )−1.

EDU>> inv((eye(4) - C’))
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ans =

3.5516 2.6187 0.8511 1.4894

2.7823 3.3879 0.8511 1.4894

2.4386 2.5968 1.8440 1.5603

2.4223 2.4004 0.7801 2.1986

So the price per unit of product 3 will change by 2.5968 dollars per unit if
the price of product 2 increase by 1 dollar per unit. But since (I − CT )−1 =
((I −C)−1)T , we could also look at entry (2,3) of (I −C)−1 and find the same
information.

EDU>> inv((eye(4) - C))

ans =

3.5516 2.7823 2.4386 2.4223

2.6187 3.3879 2.5968 2.4004

0.8511 0.8511 1.8440 0.7801

1.4894 1.4894 1.5603 2.1986

The point here is that you can save a lot of time if you know some shortcuts
that are provided by the properties of matrices. You could arrive at the same
answer a lot of different ways; some are just much easier than others.
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3.1 Dynamical systems

Imagine you’re trying to plan out new stations for your bike rental startup. Your
business model is interesting in that unlike many car rental services, customers
don’t have to return the bike where they picked it up. One of the headaches
that you regularly deal with is bikes stacking up in popular locations. It’s a
thin line to walk: you don’t have to have customers unable to return their bike
because the station is full, but you don’t want to invest in large stations that
are underutilized. We’ll see that you can use linear algebra to determine the
long-term distribution of bikes across all your locations given some moderate
constraints.

3.1.1 Transition matrices

To get a handle on the situation, let’s first deal with a case that there are just two
locations, Location 1 and Location 2. Suppose that we’ve collected data that
indicate that 80% of the bikes rented at Location 1 are returned to Location
1, and the remaining 20% are returned to Location 2. We have similar data
dealing with Location 2: 60% of the bikes rented at Location 2 are returned
to Location 2, and the remaining 40% are returned to Location 1. We call a
situation such as this one in which multiple interdependent quantities change
together over time a dynamical system.

We’ll assume for simplicity that every bike is rented and returned every
day. Let’s define x0 and y0 to be the initial number of bikes at Location 1 and
Location 2, respectively. Then the number of bikes housed at Location 1 on day
1 is

x1 = 0.8x0 + 0.4y0,

and the number of bikes housed a Location 2 on day 1 is

y1 = 0.2x0 + 0.6y0.

We can gather these equations up into a matrix equation.[
x1

y1

]
=

[
0.8 0.4

0.2 0.6

][
x0

y0

]
b1 = Tb0.

We call T the transition matrix of the system. Notice that T serves a really
useful purpose: it updates (or transitions) the state of the bike distribution at
time t = 0 to the bike distribution at time t = 1. If we assume that the same
rental-return percentages hold on day t = 1, then the bike distribution on day
t = 2 will be

b2 = Tb1

= T (Tb0)

= T 2b0.



3.1. DYNAMICAL SYSTEMS 65

So if T moves the state of our business one day into the future, T 2 moves the
state two days into the future. The trace of our variables over time is called the
trajectory of the dynamical system. Note that the trajectory depends on b0.

To make things more concrete, let’s see an example. Imagine that the initial
distribution of 300 total bikes is even between the two locations so that x0 =
y0 = 150. Using our formation from above, we see that

EDU>> T * [150; 150]

ans =

180

120

so that there are 180 bikes at Location 1 and 120 bikes at Location 2. What
about after 2 days of activity?

EDU>> T * [180; 120]

ans =

192

108

We also could have computed the same answer using T 2 and b0 = [150, 150]T .

EDU>> T^2 * [150; 150]

ans =

192.0000

108.0000

We still haven’t determined what’s happening in the long term. We could always
calculate T tb0 for large t. For instance,

EDU>> T^100*[150;150]

ans =

200.0000

100.0000

But this doesn’t give us an idea of how the distribution changes over time.
Notice that this is really close to the distribution we saw at t = 2. To trace the
bike distribution over time, we’ll need another piece of Matlab machinery: the
for loop.
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3.1.2 The for loop

Imagine we wanted to successively calculate the distribution of bikes at each of
the locations over 4 consecutive days. We’ve already decided that the distribu-
tion of bikes of day t is T tb. We could type in 4 different commands, but this
wouldn’t scale well if we wanted to compute the distribution at each of the first
100 or 1000 days. We can use a Matlab command to simplify the process. (You
can copy and paste this code directly into the command line, or you can open a
new Matlab script by going to File > New > Blank M-File and then pasting;
to run this piece of code in the M-file, press F5.)

b = [150; 150];

for t = 1:4

T^t * b

end

Before we examine the output, let’s walk our way through to the code. We
initialize the variable b to our initial distribution of bikes. The next line, which
we read in words as “for t from 1 to 4”, begins the for loop. Matlab executes
statements found inside the loop, that is, on lines between the for line and
the end line sequentially from top to bottom. When Matlab reaches the end

statement, it increments t by 1, goes back to the top of the loop, and completes
the whole process again. Matlab stops executing, or “exits”, the loop when t

goes outside of the range we’ve specified, here outside of the range 1 to 4. So the
first time Matlab passes through the loop, Matlab executes T^1 * b, the second
time it executes T^2 * b, the third time T^3 * b and so on. (Notice that we
could easily change the time span over which we calculate the bike distribution
by simply increasing the 4 to a 10 or 100 or whatever we’d like; the loop would
work exactly the same.)

When we run this piece of code, we see

ans =

180

120

ans =

192.0000

108.0000

ans =

196.8000

103.2000
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Figure 3.1:

ans =

198.7200

101.2800

Notice that since we did not put a semicolon at the end of the line reading
T^t*b, Matlab will print the result of each of these computations. But even this
printout doesn’t really help us see what’s going on here. For this, we can use
the plot command.

3.1.3 Plotting

Let’s use the our base for loop with just a few more commands.

b = [150; 150];

B = zeros(2,4);

time = 1:4;

for t = 1:4

B(:,t) = T^t * b;

end

plot(time,B(1,:),’r’); hold on

plot(time,B(2,:),’b’)

xlabel(’day’)

ylabel(’cars’)

This may a look more complicated, but most of the additional commands are
just fluff to make the figure look decent. In the meat of the code, we begin by
initializing B to be a 2 × 4 matrix full of zeros. This is where we’ll keep the
data on the distribution of bikes. Each column will represent a specific day,
and each row will represent a specific location. We calculate T^t*b just as we
did in the previous example, but here we assign the vector we’ve computed to
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be column t of matrix B. The colon symbol “all components” so that B(:,t)

means “all rows, column t”. Similarly, in the plot commands, B(1,:) means
“row 1, all columns” and B(2,:) means “row 2, all columns”. The full command
plot(time,B(1,:),’r’) plots the first row vector of B as y values against the
vector time as the x values. The optional argument ’r’ just makes the line red.
Remember, if you’re unsure what a command does or how to use it properly,
type help and then the command’s name in Matlab. When we run this code,
we get Figure 3.1.

3.1.4 Steady state vectors

From the figure, it seems like the distribution of bikes is moving towards a steady
state in which there are 200 bikes at Location 1 and 100 bikes at Location 2.
Mathematically, a steady state vector v for which Tv = v. In words, the
transition matrix which moves us from time t to time t+ 1 does not affect the
steady state vector; the state of the system is the same at time t as it is at time
t+ 1. We can verify that [200, 100]T is in fact a steady state using Matlab.

>> [0.8 0.4; 0.2 0.6] * [200; 100]

ans =

200

100

We’ll see in the next section that the idea of a steady state vector is in fact a
special case of the more general equation Tv = λv. In this more inclusive case,
the matrix T acts to scale v by a factor of λ. In the case of a steady state vector
λ = 1.

3.2 Eigenvectors and eigenvalues

We saw in the last section that steady state vectors at which Tv = v can play
an important role in dynamical systems. We can learn even more about the long
term behavior of dynamical systems by expanding this concept slightly. Given
a matrix T , an eigenvector v associated with eigenvalue λ satisfies Tv = λv.
Conceptually, the matrix T acts to scale v by λ. In the case of a steady state
vector, λ = 1, but there are many other and interesting cases to consider.
Example 12:

A =

[
2 0

0 −3

]
with (v1, λ1) =

([
1

0

]
, 2

)
and (v2, λ2) =

([
0

1

]
,−3

)
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Example 13:

B =

[
1 2

1 2

]
with (v1, λ1) =

([
1

1

]
, 3

)
and (v2, λ2) =

([
1

−1/2

]
, 0

)

Example 14:

C =

[
13 −4

4 7

]
with (v1, λ1) =

([
−2

1

]
, 15

)
and (v2, λ2) =

([
1

2

]
, 5

)

3.2.1 Computing eigenthings

A lot of time and effort has gone into developing algorithms to find eigenvectors
and eigenvalues efficiently, at least in a numeric sense. In Matlab, we write
[V,D] = eig(A). This command returns two square matrices V and D such
that

V =
[
v1 v2 · · · vn

]

D =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn


and Avi = λivi for every eigenpair. For instance, we can use Matlab to compute
the eigenthings from the last example above.

>> [V,D] = eig([13 -4; -4 7])

V =

-0.4472 -0.8944

-0.8944 0.4472

D =

5 0

0 15

But why don’t the columns of V look the the eigenvectors v1 = [−2, 1]T and
v2 = [1, 2]T we found earlier? Well, if (v, λ) is an eigenpair of A, then so is
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(cv, λ) for any constant c. To see this, we need only verify that A(cv) = λ(cv) is
true. So Matlab is giving us just one scaling of each of the eigenvectors. Notice
that the first eigenvector that Matlab has given us is just −0.4472v2. Similarly,
the second eigenvector Matlab has generated is 0.4472v1. (Matlab in fact is
giving us the unique scaled version of each eigenvector that has length 1. We’ll
talk about this morning when we talk about orthogonality and norms in a later
chapter.)

3.2.2 Applications to dynamical systems

So why should we care about eigenthings? Imagine that we have a 2×2 transition
matrix T with eigenpairs (v1, λ1) and (v2, λ2). Let’s assume that we can write
some initial condition x0 as a linear combination of the eigenvectors so that
x0 = c1v1 + c2v2. Then

x1 = Tx0

= T (c1v1 + c2v2)

= c1Tv1 + c2Tv2

= c1λ1v1 + c2λ2v2.

So T has scaled the v1 component of x0 by λ1 and the v2 component of x0 by
λ2. We can observe a similar action on the next iteration of time.

x2 = Tx1

= T (c1λ1v1 + c2λ2v2)

= c1λ1Tv1 + c2λ2Tv2

= c1λ
2
1v1 + c2λ

2
2v2.

So we have accumulated a factor of λ1 in front of the first eigenvector and a
factor of λ2 in front of the second eigenvector. If we were to repeat this for n
iterations, we would arrive at

x2 = c1λ
n
1v1 + c2λ

n
2v2.

If |λi| > 1, then the contribution of vi grows exponentially over time. If |λi| < 1,
then the contribution of vi shrinks exponentially over time. And if |λi| = 1,
then the contribution of vi remains constant over time.

This has some profound implications for the behavior of dynamical systems.
We call the eigenvalue of a matrix T with largest absolute value the dominant
eigenvalue of T . Since the dominate eigenvalue has the largest absolute value,
the contribution of its associated eigenvector to the state of the system grows
faster than any other eigenvector’s contribution. Soon, the state of the system
looks very much like a scaled version of the dominate eigenvector. The domi-
nate eigenvector does in fact dominate the long term dynamics of the system.
Mathematically, if we have eigenpairs (v1, λ1), (v2, λ2), . . . , (vn, λn) ordered so
that |λ1| > |λ2| > . . . > |λn. Then for large t,

xt ≈ c1λtv1.
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3.2.3 An example

For a more concrete example, let’s go back to our transition matrix from the
previous section

T =

[
0.8 0.4

0.2 0.6

]
.

Matlab tells us that the eigenpairs of the matrix are given by

EDU>> [V,D] = eig([0.8 0.4; 0.2 0.6])

V =

0.8944 -0.7071

0.4472 0.7071

D =

1.0000 0

0 0.4000

After scaling the eigenvectors, we have eigenpairs (v1, λ1) = ([2, 1]T , 1) and
(v2, λ2) = ([−1, 1]T , 0.4), and the dominating eigenpair is the first one. We
can write an initial condition x0 = [150, 150]T as a linear combination of the
eigenvectors by solving [

2 −1

1 1

][
c1

c2

]
=

[
150

150

]
.

We can easily solve this system using Matlab.

EDU>> [2 -1; 1 1] \ [150; 150]

ans =

100

50

So x0 = 100v1 + 50v2. Then going from time t = 0 to time t = 1 using our
transition matrix T gives

x1 = Tx0

= T (100v1 + 50v2)

= 100Tv1 + 50Tv2

= 100(1)v1 + 50(0.4)v2.
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Incrementing time again, we compute x2.

x2 = Tx1

= T (100(1)v1 + 50(0.4)v2)

= 100(1)Tv1 + 50(0.4)Tv2

= 100(1)2v1 + 50(0.4)2v2.

It we continue to apply this same methodology out to the kth time step, we
would find

xk = 100(1)kv1 + 50(0.4)kv2.

Since (0.4)k ≈ 0 for large k, we have

xk ≈ 100(1)kv1 = 100

[
2

1

]
=

[
200

100

]
for large k. Notice that since the growing or shrinking of each component is
exponential, we actually don’t have to look very far into the future to see good
convergence to the dominant eigenvector.

The conclusion here is that we can learn everything about the long-term
behavior of a dynamical system simply by investigating its eigenpairs, and in
particular its dominating eigenpair. Now, we have swept under the rug an
assumption that there is a single dominating eigenpair, but this need not always
be the case; it could be that there are two eigenvectors both with the same
eigenvalue. We will investigate these edge cases in the future.

3.3 The characteristic equation

In the last section, we saw that eigenpairs (and in particular dominant eigen-
pairs) can tell us a lot about the long term behavior of a dynamical system. We
also saw that Matlab can compute eigenvalues and eigenvectors numerically.
But at this point it’s still unclear where these quantities come from. In fact, at
this point it’s pretty much magic. There’s a lot of quantitative reasoning behind
eigenpairs, at we’ll delve into these ideas in this section. For an eigenpair (v, λ)
to exist for a given matrix A, it must be that

Av = λv.

Rearranging this equation can give us a whole new understanding.

(A− λI)v = 0.

So (v, λ) is an eigenpair of A if and only if (A−λI)v = 0 has a nontrivial solution
v. This insight allows us to connect eigenpairs to all of the material concerning
the solutions of linear systems that we’ve developed in the past several chapters.
A particularly useful way to think about the problem is to equate the existence
of an eigenpair (v, λ) of a matrix A to the idea that det(A − λI) = 0. We can
compare this formulation to the examples we saw in the previous section.



3.3. THE CHARACTERISTIC EQUATION 73

3.3.1 Computing eigenvalues

Let’s consider the example matrices we saw in the last section and rather than
just stating their eigenpairs out of thin air, calculate them methodically.

Define

A =

[
2 0

0 −3

]
.

We’ve seen that λ = 2 and λ = −3 are eigenvalues of A. But let’s consider the
eigenpairs of A in a different light. For (v, λ) to be an eigenpair of A, we must
have

Av = λv

(A− λI)v = 0([
2 0

0 −3

]
−

[
λ 0

0 λ

])
v = 0.

The last equation holds with v 6= 0 if and only if det(A − λI) = 0. We can
easily compute this determinant.

det(A− λI) = 0

det

([
2 0

0 −3

]
−

[
λ 0

0 λ

])
= 0

det

([
2− λ 0

0 −3− λ

])
= 0

(2− λ)(−3− λ) = 0.

So det(A − λI) = 0, and hence an eigenpair (v, λ) exists, if and only if λ = 2
or λ = −3. So the eigenvalue of A are λ = 2 and λ = −3, just as we found
earlier. But note that under this formulation, we know that these are the only
eigenvalues of A.

For another example, define

B =

[
1 2

1 2

]
.

Then (v, λ) is an eigenpair of B if and only if Bv = λv. Writing this out in
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more detail, we see

(B − λI)v = 0([
1 2

1 2

]
−

[
λ 0

0 λ

])
v = 0([

1 2

1 2

]
−

[
λ 0

0 λ

])
v = 0[

1− λ 2

1 2− λ

]
v = 0.

Again, this last equation holds with nonzero v if and only if det(B − λI) = 0.
The determinant is given by

det(B − λI) = (1− λ)(2− λ)− 2

= λ2 − 3λ

= λ(λ− 3).

So an eigenpair (v, λ) exists if and only if λ = 0 or λ = 3.
For a final example, define

C =

[
13 −4

−4 7

]
.

Then setting det(C − λI) = 0 gives

det

([
13− λ −4

−4 7− λ

])
= 0

91− 20λ+ λ2 − 16 = 0

λ2 − 20λ+ 75 = 0

(λ− 15)(λ− 5) = 0.

So the eigenvalues of C are λ = 15 and λ = 5.
While we’ve only completed examples with 2 × 2 matrices here, this is a

very general process. We call det(A−λI) the characteristic equation of A. The
characteristic equation of a matrix A will always be a polynomial in λ, and the
roots of this polynomial are the eigenvalues of A.

But this brings us to an important question: if Matlab can just compute
the eigenpairs of A, why should we care about the characteristic equation?
Well, Matlab is very good at computing things numerically, but what if one of
the entries A is not a number, but a variable? For an example, consider the
predator-prey model of owls and rats with transition matrix

T =

[
0.5 0.4

−p 1.1

]
.
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We saw in Studio 8 that the parameter p is the predation rate which measures
the average number of rats (in thousands) eaten by one owl. We also saw in
this studio problem that for some values of p both species go extinct, while for
other values of p both grow in the long term. A natural question is what value
of p separates the two scenarios. Let λ be the dominant eigenvalue of T . If
|λ| > 1, then the species grow together, and if |λ| < 1, then the populations go
both extinct. So the dividing case is |λ| = 1. Using the characteristic equation,
we can solve for the eigenvalues, even with the uncertainty generated by the
parameter p.

det(T − λI) = det

([
0.5 0.4

−p 1.1

]
−

[
λ 0

0 λ

])

= det

([
0.5− λ 0.4

−p 1.1− λ

])
. = (0.5− λ)(1.1− λ) + 0.4p

= λ2 − 1.6λ+ 0.4p+ 0.55.

Setting det(T − λI) equal to 0 and solving for λ produces (for instance, with
WolframAlpha or any other symbolic calculator)

λ1 =
1

10
(8 +

√
9− 40p)

λ1 =
1

10
(8−

√
9− 40p).

Recalling that the separating case is |λ| = 1 for the dominant eigenvalue λ, we
can solve for the critical predation rate that separates the populations thriving
together from the populations going extinct.

1 =
1

10
(8 +

√
9− 40p)

p =
1

8
= 0.125.

So the populations go extinct p > 0.125 and grow together towards a constant
ratio if p < 0.125. Again, these computations aren’t intended to be done by
hand; use whatever symbolic calculator you’re comfortable with. This result
agrees well with the intuition we built in Studio 8. We saw that a predation
rate of p = 0.1 led the populations growing together over time, and a predation
rate of p = 0.2 led to both populations going extinct.

3.3.2 Computing eigenvectors

We’ve seen how to compute the eigenvalues of a matrix A using the character-
istic equation, but it’s still unclear how to compute the associated eigenvectors.
This, too, follows a deterministic methodology. We’ll consider some of the same
examples.



76 CHAPTER 3. EIGENPAIRS AND DYNAMICAL SYSTEMS

Let’s go back to our matrix

B =

[
1 2

1 2

]
.

We know λ = 3 is an eigenvalue, but what about a corresponding eigenvector?
An eigenvector associated eigenvalue λ = 3 is a nontrivial solution to

Bv = 3v

(B − 3I)v = 0[
1− 3 2

1 2− 3

]
v = 0.

Remember that if a system is homogeneous, we can solve the system just by
taking the RREF of the coefficient matrix.

rref

([
−2 2

1 −1

])
=

[
1 −1

0 0

]
.

Writing v = [v1, v2]T , we can write this result as

v1 − v2 = 0

0 = 0.

Then v1 = v2, and substituting these values back into v gives v = [v2, v2]T =
v2[1, 1]T . So [1, 1]T and all its multiples are eigenvectors with eigenvalue λ = 3,
just as we found in the previous section.

What about the other eigenvalue λ = 0? Here we have

rref

([
1 2

1 2

]
− 0I

)
= rref

([
1 2

1 2

])

=

[
1 2

0 0

]
.

Again setting v = [v1, v2]T , the corresponding linear system reads

v1 + 2v2 = 0

0 = 0.

So v = [v1, v2]T = [−2v2, v2]T = v2[−2, 1]T . We conclude that v = [−2, 1]T and
all its multiples are eigenvectors associated with eigenvalue λ = 0, just as we
found in the previous section.
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3.3.3 Eigenvalue zero and invertibility

This example brings us to an important point: if (v, λ = 0) is an eigenpair of
matrix A, then Av = 0v = 0 has a nontrivial solution v. So we can connect this
condition to our list of necessary and sufficient conditions on the invertibility of
A. An n× n matrix A is invertible if and only if

• There exists A−1 such that A−1A = AA−1 = In.

• rref(A) = In.

• A has n pivots.

• The columns of A are linearly independent.

• The columns of A span Rn.

• det(A) 6= 0.

• Av = 0 has only the trivial solution v = 0.

• λ = 0 is not an eigenvalue of A.

3.4 Complex Eigenvalues

We’ve seen that the roots of the characteristic polynomial det(A− λI) give the
eigenvalues λ of A. But in what we seen so far, we’ve been conveniently ignoring
a simple fact: polynomials can have complex eigenvalues. In this section we’ll
see what complex eigenvalues mean in the context of dynamical systems.

3.4.1 A first example

Define

T =

[
0 −1

1 0

]
.

Using the tools we created in the last section, we can compute the characteristic
polynomial of the matrix.

det(T − λI) = det

([
−λ −1

1 −λ

])
= λ2 + 1.

Recalling that i =
√
−1, we can conclude that T has eigenvalues λ = ±i. But

what does T actually do to vectors? Let’s consider one particular example,
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Figure 3.2: Transformation of x0 under successive applications of T .

x0 = [1, 1]T . Then

x1 = Tx0[
0 −1

1 0

][
1

1

]

=

[
−1

1

]
.

We can see this transformation of x0 into x1 graphically in figure ??. Notice
that T has rotate x0 90 degrees counterclockwise.

What happens if we continue to sequentially apply T?

x2 = Tx1

=

[
0 −1

1 0

][
−1

1

]
=

[
−1

−1

]
.

x3 = Tx2[
0 −1

1 0

][
−1

−1

]
=

[
1

−1

]
x4 = Tx3

=

[
0 −1

1 0

][
1

−1

]
=

[
1

1

]
= x0.

So after four applications of the matrix T , we’ve arrive back where started.
Graphically, after applying 4 sequential rotations of 90 degrees each, we have
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Figure 3.3: Complex eigenvalue

completed one 360 degree rotation. If we consider the matrix T as a transition
matrix of a dynamical system, we arrive at a really startling conclusion: if we
continue to apply T , we never end up at a steady state population distribution
given the initial condition x0. Remember that if the eigenvalues of a transition
matrix are real, we always arrive at some long term steady state ratio of the
populations. But this isn’t the case here! Here, the populations would continue
“rotating” together forever.

Reading Check 34: Choose your own initial condition x0 = [x1, x2]T and
compute four sequential applications of T . Do you arrive back where you started?

3.4.2 Review of complex numbers and their properties

A complex number has the form λ = a + bi, where a and b are real numbers.
We call a the real part of λ, denoted Re(λ), and b the imaginary part of λ,
denoted Im(λ). The absolute value of λ is defined slightly different than we’ve
seen in real numbers, but the motivation is the same. Whether a real number
x is positive or negative, it’s absolute value |x| represents its distance from the
origin on the number line. We use the same ideas to motivative the definition
of the absolute value of a complex number. Let λ = a + bi and consider the
graphical description of λ as seen in figure 3.3. Here we think of the real part
as the “x” component and the imaginary part as the “y” component. Then the
distance of the point (a, b) is just |λ| =

√
a2 + b2. Note that for a real number

x = x + 0i, we have |x| =
√
x2 + 02 =

√
x2 = |x|. So the complex number

definition of absolute value agrees perfectly with the definition we’re used to
from real numbers.

Complex numbers have a lot of interesting properties that we can exploit.
But to understand many of them, we need to introduce a new concept. For
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a complex number λ = a + bi, we define the complex conjugate of λ to be
λ̄ = a − bi. You might have first seen the complex conjugate in the context
of solutions to the quadratic equation; if there are complex roots, they occur
in complex conjugate pairs. The perhaps surprising thing is that eigenvalues
occur in complex conjugate pairs, too. But to see why this is true, we’ll have to
build up some machinery first. We’ll prove the following statements in a studio
problem: for complex numbers z and w,

• z + w = z̄ + w̄

• zw = z̄w̄

• |z̄| = |z|

• |z|2 = z̄z

Also note that if x = x + 0i is a real number, then x̄ = x − 0i = x. This
also implies that if a vector v or matrix A is real, then v̄ and Ā are real,
respectively.) of Using these facts, we can tackle the idea of complex conjugate
eigenvalue pairs.

Let’s assume that (v, λ) is an eigenpair of a real matrix A, with both v and
λ complex. (When we say a vector (or matrix) is complex, we mean that it has
components/entries that are complex numbers.) Then (v̄, λ̄) is an eigenpair of
A, too. We can simply verify that this is true. But we’ll have to use many of
the facts that we established above.

Av̄ = Av

= λv

= λ̄v̄.

So (v̄, λ̄) is an eigenpair of A, too.

Reading Check 35: For each line of the preceding series of equations, indicate
which property of complex numbers allowed us to move to the next line

3.4.3 A more general example

Define

C =

[
a −b
b a

]
.

Note that the first example we considered in this section is a specific case of
this type of matrix in which a = 0 and b = 1. We can find the eigenvalues of C
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using the characteristic equation machinery we developed in the last section.

det(C − λI) = det

([
a− λ −b
b a− λ

])
= (a− λ)(a− λ)− (−b)(b)
= (a− λ)2 + b2.

Then solving for the eigenvalues using the quadratic formula gives λ1,2 = a± bi.
So the eigenvalues here occur in complex conjugate pairs as we saw earlier must
be true.

Now consider the graphical representation of λ as seen in figure 3.3. We
have r = |λ| =

√
a2 + b2, and φ as the lesser included angle. We can rewrite C

by factoring out r.

C = r

[
a
r − b

r
b
r

a
r

]

=

[
r 0

0 r

][
a
r − b

r
b
r

a
r

]
.

We can simplify the second matrix in the product by remembering that the
cosine of an angle equals “adjacent over hypotenuse” and the sine of an angle
equals “opposite over hypotenuse”.

C =

[
r 0

0 r

][
cosφ − sinφ

sinφ cosφ

]
= SrRφ.

Let’s think about what these matrices do. The matrix Sr is a scaling matrix
because Srx simply scales both components of x by r. The matrix Rφ is a
rotation matrix because Rφx rotates x by φ radians counterclockwise. We can
piece these actions together to think about how C modifies a vector x.

Cx = SrRφx

= Srxrotated by φ

= xrotated by φ and scaled by r

So complex eigenvalues induce rotations and scalings.
Let’s see a specific example. Define

C =

[
3 −4

4 3

]
.

Then r = |λ| =
√

32 + 42 = 5. Moreover sinφ = 4/5 and cosφ = 3/5 so that
φ = sin−1(4/5) ≈ 0.92. So C represents a rotation counterclockwise by φ = 0.92
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Figure 3.4: The stages of the action of the matrix C.

radians followed by a scaling of all components by r = 5. Let’s consider how C
affects a single vector x = [1, 1]T .

Cx =

[
5 0

0 5

][
3/5 −4/5

4/5 3/5

][
1

1

]

=

[
5 0

0 5

][
−1/5

7/5

]

=

[
−1

7

]
.

The rotation and sequential scaling of x can be seen in figure 3.4.

3.4.4 Complex eigenvalues and dynamical systems

It’s still unclear why we should care about complex eigenvalues, at least in
any applicable sense. Let’s consider one application to dynamical systems. We
learned in a previous section that the eigenvalue that maximizes |λ| dominants
the long term behavior of the system. This is true even when the dominant
eigenvalue is complex!
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3.5 PageRank

Arguably the most innovative feature of the world wide web is its hyperlink
structure. Pages link to other pages, and these links can tell us quite a bit about
the “importance” of each page. It’s still unclear what the term “importance”
actually means at this point, as there are many ways one could define the
term in the context of the web. In this section, we’ll develop several different
methodologies for ranking web pages in order of importance. We’ll start with a
basic definition and work our way up to the PageRank definition as developed
by Google founders Brin and Page. To give ourselves a concrete example, we’ll
always consider the web featured in figure 3.5. Admittedly, this is a very simple
example. But we’ll see that it is more than sufficient to point out the problems
with each of the methods we’ll propose.

Figure 3.5: Basic web network.

In this diagram, an arrow from page i to page j represents a link on page
i that points to page j. A bidirectional arrow indicates that page i links to
page j and vice versa. If you happen to have some experience with discrete
mathematics, you’ll recognize this web as an example of a directed graph. Notice
that we do allow cycles in this context, so that page i linking to page j linking
to page k linking back to page i is admissible.

3.5.1 Method 1: count in the in-links

Probably the most straightforward way to try to measure importance is by
simply counting the number of incoming links to a page and using this number
as the page’s rank. After all, if pages are linking to yours, then your page
surely has something of value on it. The ranking vector using this metric is
x = [2, 1, 3, 2]T . So according to Method 1, page 3 is the most important. But a
ranking method as simple as this is sure to have flaws. Imagine that the owner
of page 2 is upset about being ranked last under Method 1. Imagine he creates
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three new pages, page 5, page 6 and page 7, and makes each of them link to
page 2 as seen in figure 3.6.

Figure 3.6: Network with malicious web pages that inflate the importance of
page 2 under Method 1.

So suddenly page 2 has skyrocketed from last rank to first rank with the
addition of pages 5, 6 and 7. This seems like a problem for a couple of reasons.
First, someone easily cheated the proposed ranking method, and we’d like to
avoid that happening. But this example is hinting at what might be even a
larger problem: even if 5, 6 and 7 were legitimate pages and not created to
warp the rankings, their votes shouldn’t count for very much, because no one
links to them! There’s a big difference between getting referred by CNN.com,
which a lot of people link to, or referred by my grandmother’s blog about her
cat, which, surprisingly, few people link to.

3.5.2 Method 2: consider rank of referrers

We can develop a more detailed and nuanced ranking methodology by consid-
ering the rank of the referrer. If a referrer has a higher rank, her link to your
site should count more than a link from a page with lower rank. For one easy
example of this type of thinking, let’s imagine that the rank of a page is just
the sum of the ranks of the pages that link to it. Applying this definition to the
network seen in 3.5, we arrive at a system of linear equations in the rankings
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xi.

x1 = x3 + x4

x2 = x1

x3 = x1 + x2 + x4

x4 = x1 + x2

↔


x1

x2

x3

x4

 =


0 0 1 1

1 0 0 0

1 1 0 1

1 1 0 0



x1

x2

x3

x4


↔ x = Ax.

If you’ve had some experience with graph theory, you’ll recognize the matrix
A as the adjacency matrix of the underlying web graph. Using the vocabulary
we’ve developed over the previous sections, we can read off this last line by
saying the ranking x must be an eigenvector of A with associated eigenvalue
λ = 1. It might be strange that eigenpairs are showing up at this stage in the
development, but this is just a testament to the utility and pervasiveness of
eigenvalues in linear systems.

There are problems with this method, too. We’ve seen in the past several
sections that eigenpairs can be delicate things. For instance, for λ = 1 be an
eigenvalue of A, it must be the case that λ = 1 is a root of the characteristic
equation det(A− λI) = 0. There’s no good reason why this should be the case.
Stated another way, there’s no good reason why there should be a ranking x
that fits into the method we’ve developed. This is fundamentally a problem of
existence, as opposed to uniqueness which we’ll see in Method 3, of the ranking.

Method 1 also points to a bigger flaw in our underlying mentality. Somehow,
pages that link to many other pages are influencing the ranking much more than
pages that link to just a few others. This might be exactly the opposite of your
intuition. Pages that link to just a few others might be much for selective about
what pages they recommend, and therefore their recommendation should really
count. Compare this to a page that links to many, many other pages. Somehow
each of these recommendations feels like it should be worth less.

3.5.3 Method 3: give each page an equal vote

We’d like the keep the idea that the value of a link should correspond somehow
to the rank of the referrer, but we’d like to get rid of the fact that some pages
somehow have more influence than others. Let’s imagine that a page has to
distribute its rank evenly among all the pages it links to. For instance, in our
running example, page 1 links to three pages, page 2, page 3 and page 4. So
page 1 contributes (1/3)x1 to the rank of each of the three pages it links to. We
can write a new system of liner equations that describes this method.

x1 = x3 + 1
2x4

x2 = 1
3x1

x3 = 1
3x1 + 1

2x2 + 1
2x4

x4 = 1
3x1 + 1

2x2

↔


x1

x2

x3

x4

 =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0



x1

x2

x3

x4


↔ x = Sx.
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Figure 3.7: A web with disconnected groups of pages.

Notice that just as in Method 2, if a ranking x exists, then it must be an
eigenvector of a matrix, here S, with associated eigenvalue λ = 1. But the
matrix S here has more structure than the matrix A we used in Method 1. Here
S is a column stochastic matrix. We know from Studio 9 that any stochastic
matrix has λ = 1 as an eigenvalue. So using this method, we are sure to produce
a ranking x that satisfies all the constraints we’ve set out.

The problem with this method is that there may be more than one equally
valid ranking. This would cause all sorts of problems. How do you know which
ranking to trust? How do you differentiate between them? But rather than try
to answer these questions, let’s see an example that admits multiple rankings,
and then think about how we might cure the disease rather than alleviate the
symptoms.

Consider the 4 page network seen in figure 3.7. A Method 3 ranking of this
network satisfies

x1 = x2

x2 = x1

x3 = x4

x4 = x3

↔


x1

x2

x3

x4

 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0



x1

x2

x3

x4



We can verify that both x1 = [1, 1, 0, 0]T and x2 = [0, 0, 1, 1]T are eigenvectors
of the matrix, each having associated eigenvalue λ = 1. So we’ve computed two
totally different rankings of the four pages, one of them ignoring pages 3 and 4,
and the other ignoring pages 1 and 2. This is really getting at the heart of the
issue. Somehow we actually have two separate networks in play here. But how
do we compare completely separate networks? The pages in the groups aren’t
linking between the groups, so it’s impossible for us to trace the influence of a
page in one group to any page in the other.
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Figure 3.8: The real links (left) and the artificial links (right) present in Method
4.

3.5.4 Method 4: connect the components

To get rid of disjoint groups of web pages, we’ll simply connect them all together.
But the exact way in which we do this can make things really easy or really
hard for us. Imagine that we artificially add links between every web page and
every web page (including itself) in addition to the actual link structure of the
network. Since these links aren’t real in the sense that one page isn’t really
recommending another, we’d like the impact of these pages to be small on the
overall ranking. Remember, we’re just trying to get rid of the disconnected
components in the page network so that (hopefully) we’ll have a unique ranking
in the end. Imagine we give each one of these new, fake edges coming into page
i weight α/N , where α is a number between 0 and 1, and N is the total number
of pages in the network, in the computation of the rank of page i. We call α
the damping factor. We could define a new matrix H = S + α(1/N), but this
matrix wouldn’t be stochastic and have all the nice properties that come along
with that. Instead, we define

G = (1− α)S + α
1

N

which we call the Google matrix of the network. A ranking x according to this
method satisfies x = Gx.

Reading Check 36: Convince yourself that G is column stochastic and has
only positive entries given that S is column stochastic α ∈ (0, 1).

We still haven’t resolved the question as to whether x is unique. To do this,
we can bust out a golden oldie theorem.

Perron-Frobenius (1907): Suppose that A is a n × n matrix with strictly
positive entries. Then (1) A has a unique dominant eigenpair. (2) The dominant
eigenvector has all positive entries. (3) If in addition A is column stochastic,
then λ = 1 is the dominant eigenvalue of A.



88 CHAPTER 3. EIGENPAIRS AND DYNAMICAL SYSTEMS

This may not seem like a tremendous fact, but it is. Well, it at least made
Brin and Page billionaires many times over. Taken all together, we’ve con-
cluded that the unique ranking we want is actually the dominant eigenvector
of G. This is great news, because we know the state vector xk = Gxk−1 of
a dynamical system with state transition matrix G very closely resembles the
dominant eigenvector when k is even just moderately large. (In fact, we saw
that the convergence to the dominant eigenvector is exponential in k.)

Let’s see this example applied to our network. We first need to initialize our
Google matrix.

EDU>> S = [0 0 1 1/2; 1/3 0 0 0; 1/3 1/2 0 1/2; 1/3 1/2 0 0 ];

EDU>> alpha = 0.15; N = 4; % the value of alpha here is typical

EDU>> G = (1-alpha)*S + alpha*(1/N);

If you’re feeling brave, take a look at G by removing the semicolon from the last
line. It looks like a mess, despite it’s relatively straightforward definition. Let’s
make our initial ranking x0 = 1/4[1, 1, 1, 1]T , that is the uniform initial ranking

EDU>> x = (1/4)*ones(4,1);

Then the rank after successive iterations is

EDU>> x = G*x

x =

0.3562

0.1083

0.3208

0.2146

EDU>> x = G*x

x =

0.4014

0.1384

0.2757

0.1845

EDU>> x = G*x

x =

0.3502

0.1512

0.2885

0.2101
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EDU>> x = G*x

x =

0.3720

0.1367

0.2903

0.2010

The rank of each page bounces around, but it does seem like they’re settling
down. If we compute out to 15 iterations we arrive at a steady-state vector out
to 4 decimal places.

EDU>> x = G*x

x =

0.3682

0.1418

0.2880

0.2021

The PageRank is telling us that Google thinks that page 1 is the most important,
followed by page 3, then page 4 and finally page 2.

Doing matrix-vector multiplication is relatively cheap, especially because the
matrix S in the real world contains mostly zeros, give that of the billions and
billions of web pages, each one links only to a few others. Since matrix-vector
multiplication distributes, we have Gx = (1−α)Sx+(α/N)x. This implies that
we can do the matrix-vector multiplication in the case in which the matrix S
has a lot of zeros (rather than the case with the matrix G which by construction
has no zeros.) This is just one of the linear algebraic tweaks we can use to make
Google’s ranking algorithm even faster.

3.5.5 Methods 3 and 4, revisited: the random surfer

Seeing that the we can iterate towards the PageRank of a network by using
the Google matrix G as our transition matrix might have got you thinking that
there might an interesting interpretation of G in some sort of physical terms.
And you’d be exactly right. But before we get to that, let’s start with a slightly
easier example in which we look at the related matrix S.

Imagine that we have a surfer who starts on page 1 at time t = 0 and
uniformly randomly choses her next page from the set of pages that page 1 links
to. There is probability 1/3 that she is on each of pages 2,3, and 4 at time t = 1.
Similarly, we could imagine that our surfer started on page 4 at time t = 0, in
which case there would be probability 1/2 that she would end up on each of
pages 1 and 3 at time t = 1. If the surfer continues clicking links uniformly
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randomly at each time step, she traces out what we call a random walk on the
network. A natural question is ”where does she end up?”. But since we’re
dealing with a random surfer, we need to think more along the lines of ”with
what probability is the surfer on a particular page in the long term?” The matrix
S is exactly the transition matrix of this system. Now, the ith component of
a vector xk represents the probability that the random surfer is on page i at
time k. For instance, imagine we start on page 1 with probability 1, so that our
initial vector is x0 = [1, 0, 0, 0]T . Then after one click, the probability that the
surfer is on each page is

x1 = Sx0

=


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0




1

0

0

0

 =


0
1
3
1
3
1
3

 .
This exactly what we found using our graphical interpretation of the problem.
So the dominant eigenvalue of S (if it is unique) represents the probability
distribution of the surfer’s location, exactly because the matrix S describes the
random walk we’ve laid out. (To be honest, I’m not sure if Brin and Page
thought about the random surfer or the dominant eigenvector approach to this
problem first. I’m severely biased and hope that they did the mathematics
first and then thought of the random surfer as a convenient way to explain the
concept to investors. But somehow I think this is wrong, and that they used
the intuition they gained by dealing with the random surfer to continue to make
progress on the mathematical side.)

The problems arising from the disconnected components that we laid out
when discussing Method 3 might make a lot more sense in the context of the
random surfer. If web page network has multiple disconnected groups, then if
the surfer starts in one of them, she has no chance of ever getting to any of the
pages in any other group.

Out solution of adding “fake” edges from every page to every page (including
itself), each have weight α/N has a really interesting interpretation, too. Imag-
ine that at each step with probability α, the random surfer doesn’t choose a link
on the page she’s currently visiting, but instead choose a new page uniformly
randomly from the entire web. (Note that this includes the possibility that
she chooses the page that she’s currently on.) And conversely, with probability
(1 − α) she continues on the random walk, just as we described above. Then
clearly the random surfer can get to any page, even if there are disconnected
groups of pages on the web. Here, the state transition matrix of the dynamical
system is G = (1− α)S + α/N . Let’s take another look at this equation in the
new light. The first term in the sum represents the “continue to surf” behavior,
and the second term represents the “stop surfing and pick a new starting point”
behavior.



Chapter 4

Orthogonal projections and
least-squares regression

Over the next few weeks, we’ll work our way towards an incredibly useful set
of technologies for dealing with real data: regression. You’ve probably seen at
this point a few specific flavors of regression: linear, multilinear, polynomial,
exponential. In this chapter, we’ll develop the theory necessary to deal with
any type of regression that is linear in the unknown coefficients. Along the way
we’ll pick some items that are interesting and useful in their own right, including
the ideas of the fundamental subspaces of a matrix and orthogonality.

4.1 Vector spaces and subspaces

A vector space, informally, is a collation of items called vectors that are closed
under addition and scalar multiplication. Said another way, if v and w are two
arbitrary vectors in our vector space, then so are v + w and cv for any scalar
c. We’ll see that while we’ve been thinking about vectors as rows or columns of
real numbers, we can expand the definition to a more abstract setting to deal
with all sorts of new, useful, and interesting cases. But before we do, let’s see a
more formal definition of the vector space. A collection of vectors V is a vector

91
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space if for every u, v, and w chosen from V , and scalars c and d, we have

u + v = v + u (commutativity)

(u + v) + w = u + (v + w) (associativity)

u + 0 = u (identity)

u + (−u) = 0 (inverse)

c(u + v) = cu + cv (distributivity)

(c+ d)u = cu + du (distributivity)

(cd)u = c(du) (associativity)

1u = u (identity).

Note that all of this is a particularly long-winded way of saying that both
addition and scalar multiplication are “well behaved” in the sense that they act
the way we have come to expect numbers (and vectors) to act.

We’ve been dealing with vectors spaces for a long while at this point. The
collection Rn, vectors with n components, each containing a real number, is
probably the best known and most used vector space. So why are we going
back to such a basic definition now? There are two main reasons. First, we’ll
see that the idea of vector spaces extends way past Rn. Making this connection
will allow us to use all the tools we’ve developed to work on Rn is a bunch of new
contexts that seem like they might have been difficult to understand and handle
without all these ready-made linear algebraic machinery. Second, we can start
thinking about how vector spaces are related to one another. One particularly
natural and handy idea is that of the vector subspace.

Informally, a vector space H of a vector space V is itself a vector space that
is entirely contained within V . Given a collection of vectors H that is contained
entirely within a vector space V , we can use what we’ll call the two step subspace
test to determine if H is a subspace of V . We define the test as follows. Let v
and w be arbitrary vectors in H.

• Verify that v + w is in H.

• Verify that cv is in H.

If both of these conditions are true for every choice of vectors v,w and scalar
c, then H is indeed a subspace of V .

For an example, let’s consider H = span([1, 2]T ) in R2. (Recall that H is the
collection of vectors that look like c[1, 2]T for any scalar c.) Let’s apply the two
step subspace test to see whether H is a subspace of R2. Define v = [k, 2k]T
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and w = [`, 2`]T . We can verify that v + w is in H, too.

v + w =

[
k

2k

]
+

[
`

2`

]

= k

[
1

2

]
+ `

[
1

2

]

= (k + `)

[
1

2

]
∈ H.

For the second step in the subspace test, we just note that c[1, 2]T ∈ H for any
scalar c just by the definition of span. So H is indeed a subspace of R2. We can
a graphical representation of this idea of subspaces in Figure 4.1.

Figure 4.1: Span of [1, 2]T (dotted line) in R2

We’ve actually already encountered two important vector subspaces, though
we haven’t had the terminology to call them as such.

4.1.1 The kernel of A

The kernel of a matrix A, denoted ker(A), is the collection of all vectors x such
that Ax = 0. In the language we’ve been using thus far, the kernel of A is the
set of all solutions to the homogeneous equation Ax = 0. We can use the two
step subspace test to verify that the kernel of A is in fact a subspace of the
domain of A. Let v and w be two vectors from ker(A). We first need to verify
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that v + w is in the kernel of A, too.

A(v + w) = Av +Aw

= 0.

So v + w is a solution to Ax = 0, too. Said another way, the vector v + w is
the in kernel of A. For the second step in the test, we need to verify that cv is
in the kernel.

A(cv) = cAv

= c0

= 0.

So cv is in the kernel of A is indeed a subspace of the domain of A.

We can actually formulate the kernel of A explicitly using RREF. For a
concrete example, consider the matrix

A =

[
1 −1

1 −1

]
.

We can find the solutions to the homogeneous equation Ax = 0 by taking the
RREF of the coefficient matrix A.

>> A = [1 -1; 1 -1];

>> rref(A)

ans =

1 -1

0 0

Defining x = [x1, x2]T and reading off the first line, we have x1 − x2 = 0, so
that x1 = x2 for any vector in the kernel of A. Then vectors in the kernel have
the form [x1, x2]T = [x2, x2]T = x2[1, 1]T . Since x2 is free in this solution, it
can assume any value. Said another way, ker(A) = span([1, 1]T ). A graphical
representation of these ideas can be seen in figure 4.2.

4.1.2 The image of A

Along with the kernel of A, there is another fundamental subspace of A: the
image of A. The image of A, denoted im(A), is defined as the set of all linear
combinations of the columns of A. Said another way, the image of a matrix A is
the span of the columns of A. The image of A is a subspace of the range of A.
We can apply the two step subspace test here, too. Imagine that v and w are
both in the image A. This implies that we can find solutions x1 and x2 such
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Figure 4.2: All vectors in the kernel of A (blue dashed line) get mapped to the
zero vector (blue dot) by A.

that Ax1 = v and Ax2 = w. We first need to verify that v + w is in the image
of A, too. This amounts to find a solution x3 such that Ax3 = v + w.

v + w = Ax1 +Ax2

= A(x1 + x2).

So setting x3 = x1 + x2, we have our desired solution. For the second step, we
need to verify that cv is in the image of A. This amounts to finding a solution
x4 such that Ax4 = cv.

cv = c(Ax1)

= A(cx1.

So setting x4 = cx1, we have our desired solution.

For an example, let’s again consider the matrix

A =

[
1 −1

1 −1

]
.

The image of A in this case all vectors of the form v = c1[1, 1]T + c2[−1,−1]T .
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In this particular case we can simplify the form of any vector in the image of A.

v = c1

[
1

1

]
+ c2

[
−1

−1

]

= c1

[
1

1

]
− c2

[
1

1

]

= (c1 − c2)

[
1

1

]

So any linear combination of the columns of A looks like a single constant
c3 = c1− c2 times the first column of A. In other words, im(A) = span([1, 1]T ).
We can see a graphical representation of this example in figure 4.3.

Figure 4.3: The image of A in this example is a 1-dimensional subspace of R2.
The kernel of A (blue dashed line) is mapped to 0 by A. All vectors on the red
dot-dashed line are mapped to the red dot below the x1 axis, and all vectors
on the purple dotted line are mapped to the purple dot above the x1 axis. The
entire x1 × x2 plane on the left maps to the solid black line representing im(A)
on the right.

4.1.3 Connecting new to old

You might be starting to get the impression that in linear algebra, a lot of
different statements about a matrix are equivalent. For instance, we’ve been
building a list of equivalent conditions for the invertibility of A. An n × n
matrix A is invertible if and only if
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• There exists A−1 such that A−1A = AA−1 = In.

• rref(A) = In.

• A has n pivots.

• The columns of A are linearly independent.

• The columns of A span Rn.

• det(A) 6= 0.

• Av = 0 has only the trivial solution v = 0.

• λ = 0 is not an eigenvalue of A.

But notice that if the columns of A span Rn, then im(A) = Rn, and that if
Av = 0 has only the trivial solution, then ker(A) = 0. So these new concepts
of the kernel and image of A are very closely tied to many of the topics we’ve
seen thus far.

4.2 The Vector Norm and Orthogonality

We encountered the idea of inner products when we were first dealing with
matrix-vector multiplication. Recall that the inner product of v and w in Rn
is defined as

vTw = wTv = v1w1 + v2w2 + . . .+ vnwn.

For short hand, we often denote the inner product of v and w as v ◦ w or
< v,w >. (We will typically use the former “dot product” notation, but you
may see the latter notation in other texts; I want you to be comfortable with
both.)

Inner products have a lot of convenient algebraic properties that we’ll lever-
age throughout this section. For instance,

• (u + v) ◦w = u ◦w + v ◦w

• (cu) ◦ v = c(u ◦ v).

You’ll prove these facts on the studio associated with this section.

While we didn’t dwell on inner products when we first saw them, the concept
gives us all sorts of interesting tools. We’ll see over the course of the next several
sections that many of these tools are particularly useful when developing the
core ideas behind regression. The three applications we’ll cover in this section
are length (norm) of a vector, the distance between two vectors, and the concept
of orthogonality.
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4.2.1 Norm

You probably ran into the idea of the length of a line segment fairly early
on in your mathematical development. As a refresher, the length of the line
segment connecting the origin to the point (a, b) is ` =

√
a2 + b2. This is a

consequence of the old-fashioned Pythagorean theorem you saw in your first
Euclidean geometry class. We can see a graphical representation of this idea in
figure 4.4.

Figure 4.4: The norm of [a, b]T is just it’s Euclidean length `. This idea gener-
alizes to higher dimensions.

If we think of the point (a, b) as a vector x = [a, b]T in R2, we can define
the norm (or length) of x to be is Euclidean length. Mathematically, we write
‖x‖ =

√
a2 + b2. The key connection to make here is that the definition of the

norm of x is actually a statement about the inner product of x with itself.

‖x‖ =
√
a2 + b2

=
√

x ◦ x.

We can easily generalize this idea to vectors living in higher dimensions. We
define the norm of a vector x ∈ Rn to be

‖x‖ =
√

x ◦ x

=
√
x21 + x22 + . . .+ x2n.

Note that since ‖x‖ = x ◦ x, we know that x ◦ x ≥ 0 and x ◦ x = 0 if and only
if x = 0.

4.2.2 Distance between two vectors

Imagine we have two vectors u and v in R2. It might be useful to have some
notion of how far away these vectors are from one another. In the real numbers,
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we defined the distance between x and y on the real number line to be |x− y|,
that is, the absolute value of the difference of the numbers. Here we’ll have to
do things slightly differently, but looking at the difference of the vectors turns
out to be a good place to start.

But what does the difference u− v look like? One easy way to get a handle
on this is to think about the vector −v in isolation for a moment. The vector is
just v in the “opposite direction”. Noting that u− v = u + (−v), we can start
to make sense of the vector difference at hand. In figure 4.5, we can see that
the distance between u and v is just ‖u−v‖. While the sketch we’ve done here
is in R2, this idea holds generally in Rn.

Figure 4.5: The distance between u and v is ‖u− v‖.

For a concrete example, consider two vectors in R2 defined as u = [5, 5]T

and v = [1, 2]T . What is the distance between these two vectors? Using the
tools we just created,

‖u− v‖ =

∥∥∥∥∥
[

5

5

]
−

[
1

2

]∥∥∥∥∥
=

∥∥∥∥∥
[

4

3

]∥∥∥∥∥
=
√

42 + 32

= 5.

For an example in higher dimensions, consider u = [4, 19, 5]T and v =
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[2, 18, 7]T in R3. Then the distance between the two vectors is

‖u− v‖ =

∥∥∥∥∥∥∥
 4

19

5

−
 2

18

7


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
 2

1

−2


∥∥∥∥∥∥∥

=
√

22 + 12 + (−2)2

= 3.

You might be starting to think that this sort of calculation becomes in-
tractable (or at least very inconvenient) if the vectors have many components.
Here the norm command in Matlab can be very useful. In Matlab, our previous
example reads

>> norm([4;19;5] - [2;18;7])

ans =

3

We’ll see that vectors with norm 1, that is ‖x‖ = 1, are key to the devel-
opment of regression (and many other linear algebraic techniques). We’ll deal
with these in much further detail in the next section.

4.2.3 Orthogonality

You may remember from your first geometry course that line segments at right
angles to one another gave you a huge advantage in proving things in a problem.
The same is true in higher dimensions, but we need a slightly more involved def-
inition to encapsulate the same idea. We see two vectors u and v are orthogonal
to one another if u ◦ v = 0.

For low-dimensional example, consider the definitions of u and v in R2 as
seen in figure 4.6. We can clearly see that the two are at a right angle to one
another. We can verify that the two are also orthogonal using our new definition.

u ◦ v =

[
1

1

]
◦

[
−1

1

]
= (1)(−1) + (1)(1)

= 0.

For an example in higher dimensions, consider the definitions of u and v
in R3. Here it’s more difficult to visualize the fact that these two vectors are
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Figure 4.6: In low dimensions, we can think of orthogonality corresponding to
right angles.

at a right angle to one another, we it’s still very easy to verify that they are
orthogonal.

u ◦ v =

2

1

1

 ◦
−1

1

1


= (2)(−1) + (1)(1) + (1)(1)

= 0.

This really brings us to the necessity of defining orthogonality rather than just
relying on the old definition of right angles. In high dimensions, it’s increasingly
difficult to make sense of the idea of an angle between vectors, but it continues
to be easy to talk about vectors being orthogonal to one another.

4.2.4 The orthogonal complement

With orthogonality in hand, we can bring forward one of the key ideas in the
development of regression: the orthogonal complement of a vector space. Given
a subspace W of a vector space V , we can think about the collection of all
vectors from V that are orthogonal to every vector in W . We call this set of
vectors the orthogonal complement of W , denoted W⊥ and pronounced “W
perp”. For two examples of what an orthogonal complement might look like,
consider figure 4.7.

What’s fascinating (and useful) is that W⊥ is a subspace of V , too! We can
verify this claim using the two step subspace test we developed in the previous
section. Let u and v be two vectors in W⊥. To prove that W⊥ is a subspace
of V , we need to confirm that both u + v and cu are members of W⊥. First
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Figure 4.7: Two examples of subspaces W and their orthogonal complement.
Every vector in W⊥ is orthogonal to every vector in W .

note that by the definition of W⊥, u ◦w = 0 and v ◦w = 0 for every w ∈ W .
We can use these facts to confirm that u+v is also a member of the orthogonal
complement of W .

(u + v) ◦w = u ◦w + v ◦w

= 0 + 0 = 0.

So the sum u + v) is part of W⊥, since it is orthogonal to every w ∈ W . We
can use a similar strategy to show that cu is in the orthogonal complement of
W .

(cu) ◦w = c(u ◦w)

= c(0) = 0.

We’ve shown that W⊥ passes the two step subspace test, and so W⊥ is a
subspace of V .

Let’s see an example. Consider W = span([1, 2]T ), a subspace of R2 as you
proved over the course of the studio problems attached to the previous section.
Any x ∈ W⊥ satisfies x ◦w for every w ∈ W . But note that any such w has
the form c1[1, 2]T . A little arithmetic will give us a convenient expression for x.

0 = x ◦w

=

[
x1

x2

]
◦ c1

[
1

2

]

= c1

([
x1

x2

]
◦

[
1

2

])
= (x1)(1) + (x2)(2)

−2x2 = x1.
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This implies that any vector x in the orthogonal complement W⊥ has the form

x =

[
x1

x2

]

=

[
−2x2

x2

]

= x2

[
−2

1

]
.

Note that this holds for any choice of x2! We can conclude that W⊥ =
span([−2, 1]T ), which is a subspace of R2.

Perhaps the most important property of orthogonal complements is one that
connects them to the ideas the image and kernel of a matrix A that we saw in
the previous section. Here we make the bold claim im(A)⊥ = kerAT for any
m × n matrix A. Before we dive into showing why this is true, let’s take a
second to think about what this means. The left side of this equation is the set
of all vectors that are perpendicular to every linear combination of the columns
of A, and the right side is the set of all solutions to ATx = 0. These may seem
like very separate ideas, and it’s exactly because they seem so separate that the
theorem is so powerful.

We’ll show that these two collections of vectors are equal by showing that any
vector x in im(A)⊥ must be in kerAT and vice versa. First, let’s assume that
x ∈ kerAT , so that ATx = 0. By the definition of matrix-vector multiplication,
this implies that r ◦ x = 0 for every row r of AT . But the rows of AT are
the columns of A. We conclude that x is orthogonal to every column of A.
But if x is orthogonal to every column of A, then x is orthogonal to all linear
combinations of columns of A. This may be easier to see once we write it out.
Define y = c1a1 + c2a2 + . . . cnan, where ai is the ith column of A, so that y is
a member of im(A). Using the fact that x is orthogonal to each of the columns
ai, we can see that x is orthogonal to y, too.

x ◦ y = x ◦ (c1a1 + c2a2 + . . . cnan)

= c1(x ◦ a1) + c2(x ◦ a2) + . . .+ cn(x ◦ an)

= 0.

We can conclude at this point that every member x of kerAT is also a member
of im(A)⊥. To finish off the proof, we need to show that any member of im(A)⊥

is also a member of kerAT .

Redefine x to be a member of im(A)⊥. This implies that x ◦y = 0 for every
y that is a linear combination of the columns of A. If we consider some very
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particular linear combinations of the columns, we can make some headway.

0 = x ◦ (1a1 + 0a2 + . . .+ 0an) = x ◦ a1

0 = x ◦ (0a1 + 1a2 + . . .+ 0an) = x ◦ a2

...

0 = x ◦ (0a1 + 0a2 + . . .+ 1an) = x ◦ an.

Packaging these equations up as a matrix equation gives an interesting insight.

0 =


x ◦ a1

x ◦ a2

...

x ◦ an

 =


a1

a2

...

an

x = ATx.

This implies that x is a member of kerAT . Since we’ve show that every member
of im(A)⊥ must be a member of kerAT and vice versa, it must be the case that
the collections of vectors are identical. So it really is the case that for any m×n
matrix A, im(A)⊥ = kerAT !

We can try to tie this together with an example. Define A by

A =

[
1 2

1 2

]
.

We can learn about the kernel of AT by row reducing the coefficient matrix AT .

>> rref([1 2; 1 2]’)

ans =

1 1

0 0

The first line reads x1 + x2 = 0. So any vector x in the kernel of AT has the
form x = [x1, x2]T = [−x2, x2]T = x2[−1, 1]T . Since x2 is free, we can conclude
that kerAT = span([−1, 1]T ).

To confirm that im(A)⊥ is the same subspace of R2, we’ll derive a universal
form for a vector x ∈ im(A)⊥. With x defined in this way, we have x◦y = 0 for
every y in the image of A. Any such y is a linear combination of the columns,
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a fact that we can use to our advantage.

0 = x ◦ y

= x ◦

(
c1

[
1

1

]
+ c2

[
2

2

])

=

[
x1

x2

]
◦

[
c1 + 2c2

c1 + 2c2

]
= x1(c1 + 2c2) + x2(c1 + 2c2)

−x2 = x1.

So any vector x in the orthogonal complement of the image of A has the form
x = [x1, x2]T = [−x2, x2]T = x2[−1, 1]T . Since this identity holds for any choice
of x2, we can conclude that kerAT = span([−1, 1]T ). We see concretely that
im(A)T = span([−1, 1]T = kerAT .

4.3 Projections and Least-Squares Data Fitting

You have probably encountered the idea of data fitting in one of your previous
applied mathematics courses. The general idea is that we have access to a bunch
of data points, and we’re looking for the linear (or higher order polynomial,
exponential, logarithmic, logistic, multilinear, etc.) model that best fits the
given data. Typically the “best model” is defined to be the one that minimizes
the sum of squared errors between the values predicted by the model and the
values observed in the data.

For an example, consider the following situation. Suppose we have (x, y) data
points (−2, 0), (−1, 2), (0, 1), (1, 3), and (2, 5), as plotted in figure 4.8. Clearly
there is a trend in the data, but just as clearly the data points do not all fall
on a single line y = β0 + β1x. It’s an interesting problem (with a potential very
useful solution) to determine what the best linear model for these data would
be.

We’ll see over the course of the section that while linear, polynomial, expo-
nential, logistic and multilinear regression are often taught (and thought of) as
separate techniques, they are all fundamentally the same in the linear algebraic
context. A single tool, namely projection, generates all of these examples and
more.

4.3.1 Projection

Let’s assume that W = span(u) is a subspace of V . Consider another vector
y /∈ W . Since any vector w ∈ W has the for c1u, this directly implies that
y 6= c1u for any weight c1. We can see this configuration graphically in figure
4.9.

What is the closest vector in W to y? Using the idea of the distance between
two vectors that we developed in the last section, we can state this question
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Figure 4.8: Data points (−2, 0), (−1, 2), (0, 1), (1, 3), and (2, 5) are not collinear.

Figure 4.9: The vector y is not in the subspace W = span(u).

another way: what is the vector ŷ ∈W that minimizes ‖y− ŷ‖? It may help to
explore this idea graphically at first. Consider figure 4.10. Clearly the line that
forms a right angle with W has the shortest length. But which vector in W is
directly under y? Remembering that right angles correspond to orthogonality,
we can make some headway.

Since W = span(u), any vector in the subspace has the form c1u. So we can
define the vector closest to y as

ŷ = c1u.

The vector y − ŷ is orthogonal to W . Said a different way, y − ŷ ∈ W⊥. We
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Figure 4.10: The closest vector ŷ to y in W = span(u) lies directly beneath y.
The vector difference y − ŷ is orthogonal to W .

can work with this.

(y − ŷ) ◦ u = 0

y ◦ u− c1(u ◦ u) = 0
y ◦ u

u ◦ u
= c1

Since the dot product of two vectors is just a scalar, so is the weight c1. We can
bring our results together by defining the closest vector in W to y as

ŷ =
y ◦ u

u ◦ u
u.

We call ŷ the projection of y onto W , denoted ŷ = projWy.
Let’s consider a concrete example in low dimension. Define

y =

[
7

6

]
, u =

[
4

2

]
.

What is the vector closest to y in W = span(u)? Using our new definition of
projection, we can compute this vector pretty easily.

ŷ =
y ◦ u

u ◦ u
u

=
(7)(4) + (6)(2)

(4)(4) + (2)(2)
u

= 2u.

So the closest vector to y in W is 2u = [8, 4]T .
We call the distance ‖y − ŷ‖ the error of the projection. This corresponds

exactly to the idea of sum of squared errors that you might have seen in a earlier
course. To see this, we just need to expand the error in terms of the components
of the vectors.

‖y − ŷ‖ =

√
(b1 − b̂1)2 + (b2 − b̂2)2 + . . .+ (bn − b̂n)2.
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(Note that the square root doesn’t really matter here, because any solution
that minimizes the sum of squared errors also minimizes the square root of
the sum of squared errors because the square root function is invective and
increasing.) Notice that the smaller the error, the closer the original vector was
to its ultimate projection. Said another way, the smaller the error, the better
the approximation of the projection of the original vector.

Figure 4.11: The closest vector ŷ to y in W = span(u) lies directly beneath y.
The vector difference y − ŷ is orthogonal to W .

Projection in higher dimensions works in much the same way. Consider the
projection of a vector y ∈ R3 onto a 2-dimensional subspace W = span(u,v)
of R3 featured in figure 4.11. Here we can still think of the projection lying
directly below the original vector. We can think about the projection ŷ in at
least three different ways, all of which give us different insights.

• The projection ŷ is the linear combination of u and v that is closest to
the original vector y.

• The projection ŷ is the closest vector in W = span(u,v) to the original
vector y.

• If we define a matrix A that has u and v as its columns the projection ŷ
is the closest vector in W = im(A) to the original vector y.

This last mindset will prove to be the most useful, because it connects the idea of
projections onto a subspace to all our results on images, kernels, and orthogonal
complements.

For even higher dimensions, the projection of y onto span of a collection
of vectors a1,a2, . . . ,ak is the same as the projection of y onto the image of
A = [a1,a2, . . . ,ak], but the idea of the projection ŷ lying “directly below” the
original vector y starts to fall apart as our geometric intuition degrades. In
these cases, it’s more convenient to think of orthogonality: the vector difference
y − ŷ is orthogonal to W = im(A). Using the notation we developed in the
previous section, y−ŷ ∈W⊥ = im(A)⊥. We’ll see that this idea is fundamental
to the idea of least-squares solutions.

4.3.2 Least-squares problems

In least squares problems, we typically have a large number of data, and we
want find out what linear (or polynomial, exponential, logarithmic, logistic,
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multilinear, etc.) model best fits the observed data. The fundamental problem
here is that no single model fits the data perfectly, and so we must compromise.
From a linear algebraic perspective, we can think of a collection of data that
has no “perfect” fit as an iconsistent system. For an example, let’s return to
the setup we introduced at the beginning of the section.

Suppose we have (x, y) data points (−2, 0), (−1, 2), (0, 1), (1, 3), and (2, 5).
Considering this problem as a linear system, we have

0 = β0 − 2β1

2 = β0 − β1
1 = β0

3 = β0 + 1β1

5 = β0 + 2β1.

We can reduce this system of equations to a single matrix equation.
1 −2

1 −1

1 0

1 1

1 2


[
β0

β1

]
=


0

2

1

3

5


Aβ = y.

If we were to take the RREF of the augmented matrix here, we could clearly see
that the system is inconsistent, which confirms our graphical intuition developed
at the start of the section. But how do we proceed?

Let’s define ŷ = β̂0 + β̂1x to be the line that minimizes the sum of squared
errors ‖ŷ − y‖2. As a matrix equation, the line of best fit is ŷ = Aβ̂. Since
the vector x is given in the problem, we know the matrix A, and so in order
to identify the line of best fit, we just need to find the coefficients in β that
minimize ‖ŷ − y‖2. We know that projections minimizes ‖ŷ − y‖2, but it still
might be unclear what subspace we’re projecting onto here. We want ŷ to be a
linear combination of the columns of A, namely the linear combination ŷ = Aβ̂.
So we want ŷ to live in the image of A, which we’ll call W = im(A). This
connection is what allows us to push forward.

Remember that if ŷ = projWy, then the vector difference y−ŷ is orthogonal
to W . Linking this observation with the idea of orthogonal complements, we
can state the condition as y − ŷ ∈ W⊥. Here W = im(A), and as we saw in
the last section im(A)⊥ = ker(AT ). This directly implies that AT (y − ŷ) = 0.
This really gives us some leverage.

AT (y − ŷ) = 0

ATy −AT ŷ =

ATy −ATAβ̂ =

ATAβ̂ = ATy.
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If ATA is invertible, there is a unique line of best fit, and we can solve for the
desired coefficients β̂.

β̂ = (ATA)−1ATy.

If ATA is not invertible, then there are infinitely many lines of best fit, and we
can solve for one of the sets of desired coefficients by row-reducing the augmented
matrix of ATAβ̂ = ATy.

Let’s get back to our linear regression example. Here, we have

ATAβ̂ = ATy

[
1 1 1 1 1

−2 −1 0 1 2

]


1 −2

1 −1

1 0

1 1

1 2


[
β0

β1

]
=

[
1 1 1 1 1

−2 −1 0 1 2

]


0

2

1

3

5


Let’s hope that ATA has an inverse and try to compute β̂ = (ATA)−1ATy. (If
ATA is not invertible, Matlab will tell us through an error message after it tries
to execute the inv command.)

>> A = [1, -2; 1, -1; 1, 0; 1, 1; 1, 2];

>> y = [0;2;1;3;5];

>> betaHat = inv(A’*A)*A’*y

betaHat =

2.2000

1.1000

The inverse of ATA evidently exists because the command executed without
any problems. We should interpret this output in the following way: there is
a unique line ŷ = 2.2 + 1.1x that minimizes the sum of squared errors for the
given data. We can see a graphical representation out conclusion in figure 4.12.

Polynomial regression

Let’s imagine that we have the same (x, y) data points (−2, 0), (−1, 2), (0, 1), (1, 3),
and (2, 5), but that we want to find the cubic function y = β0+β1x+β2x

3+β3x
3

that minimizes the sum of squared errors between the predictions and the cor-
responding observations. We’ll skip the step of writing this situation out as a
system of linear equations and skip directly to a matrix equation formulation of
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Figure 4.12: Data points (−2, 0), (−1, 2), (0, 1), (1, 3), and (2, 5) and a sketch of
the linear least-squares solution ŷ = 2.2 + 1.1x.

the problem. 
1 −2 (−2)2 (−2)3

1 −1 (−1)2 (−1)3

1 0 0 0

1 1 1 1

1 2 22 23



β0

β1

β2

β3

 =


0

2

1

3

5


Aβ = y.

As with the linear regression example, there are more equations than variables
in this linear system, and so we should expect that for most values of y, the
linear system will be inconsistent. We can skip right to the chase and calculate
the coefficients β = (ATA)−1ATy using Matlab.

>> A = [1 -2 4 -8; 1 -1 1 -1; 1 0 0 0; 1 1 1 1; 1 2 4 8];

>> y = [0;2;1;3;5];

>> betaHat = inv(A’*A)*A’*y

betaHat =

1.7714

0.2500

0.2143

0.2500
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This output is telling us that there is a unique cubic function ŷ = 1.7714 +
0.25x + 0.2143x2 + 0.25x3 that minimizes the sum of squared errors between
the predicted values and the given data. We can see a sketch of the function in
figure 4.13
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Figure 4.13: Data points (−2, 0), (−1, 2), (0, 1), (1, 3), and (2, 5) and a sketch of
the cubic least-squares solution ŷ = 1.7714 + 0.25x+ 0.2143x2 + 0.25x3.

Exponential regression

Let’s again imagine that we have (x, y) data points (−1, 2), (0, 1), (1, 3), and
(2, 5). (This is same list as before, only with the data point (−2, 0) removed.)
This time, we’ll look for the exponential function y = β0e

β1x. The form of
this model looks a little trickier, in particular because it’s unclear how we’ll
formulate the linear system associated with the data points. We can manipulate
the equation to put it into a more convenient form. We can certainly take the
natural logarithm of both sides of the equation.

y = β0e
β1x

ln(y) = ln(β0e
β1x)

Now we have to remember some properties of logarithms. Most fundamentally,
logarithms are the mathematical tool that allow us to turn products into sums.
In symbols, ln(xy) = ln(x) + ln(y). We can use this fact, and the property that
ln(ek) = k, to further reduce the equation.

ln(y) = ln(β0e
β1x)

= ln(β0) + β1x.
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Now this final form may seem like a problem to you, most likely because the
coefficient β0 is inside the logarithm. But if we define a new variable β′0 = ln(β0),
we have an equation that is a linear combination of our coefficients.

ln(y) = β′0 + β1x.

Performing this type of modification, both to the equation and to the coefficients
that we’re solving for themselves is perfectly legal mathematically. We just need
to remember that the results we get from Matlab may need to be interpreted
differently based on the changes we’ve made to the problem. We’ll see how this
works at the end of this example.

We can write the matrix equation associated with this new model and the
given data points. 

1 −2

1 −1

1 0

1 1

1 2


[
β′0
β1

]
=


ln(2)

ln(1)

ln(3)

ln(5)


Notice how similar the form of this system is to that of the linear regression
model, despite the fact that the models are quite different. This is starting
to show us that there are deep linear algebraic properties that are connecting
all of these least-squares problems. The method for solving for the unknown
coefficients β′0 and β1 is exactly the same as the previous two examples.

>> A = [1, -1; 1, 0; 1, 1; 1, 2];

>> y = [2; 1; 3; 5];

>> y = log(y);

>> betaHat = inv(A’*A)*A’*y

betaHat =

0.6579

0.3847

Let’s point out a couple items of interest before we discuss the results. In
Matlab, log is the natural logarithm, not the base 10 logarithm like you might
expect. Second, notice that you can take the logarithm of a vector component-
wise; this may be easier than writing log() a bunch of times.

We’ll need to work a little harder to interpret the results here. Remember
that we defined β′0 = ln(β0). Matlab is indicated that β′0 = 0.6579, which implies
that the actual coefficient we’re looking for is β0 = e0.6579 = 1.9307. We can
then safely claim that the unique exponential model that minimizes the sum of
squared errors between its predictions and the observations is ŷ = 1.9307e0.3847x.
We can see a sketch of the function in figure 4.14.
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Figure 4.14: Data points (−1, 2), (0, 1), (1, 3), and (2, 5) and a sketch of the
exponential least-squares solution ŷ = 1.9307e0.3847.

Logistic regression

In probability, the cumulative density function F (x) represents the probability
that a random variable X will have value less than or equal to x. Stated
symbolically, F (x) = P (X ≤ x). Estimating distributions is a really useful
tool in all sorts of fields. And since the data that we collect may not always
be consistent and/or we would like a simpler model that estimates but does
not perfectly capture certain trends, finding the best estimate of the underlying
distribution is important. One particularly popular model is

π(x) =
eβ0+β1x

eβ0+β1x + 1
,

Notice that π(x) is between 0 and 1 for every x. Moreover, we see that π(x)→ 1
as x→∞ and π(x)→ 0 as x→ −∞. So π(x) seems like a pretty good candidate
for a CDF.

It might be really unclear at this point how we’ll turn this model into some-
thing that looks linear in the unknown coefficients β0 and β1. It will certainly
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require more elbow grease than we’ve needed in the previous examples.

π(x) =
eβ0+β1x

eβ0+β1x + 1

=
1

1 + e−β0−β1x

π(x) + π(x)e−β0−β1x = 1

e−β0−β1x =
1− π(x)

π(x)

β0 + β1x = ln

(
π(x)

1− π(x)

)
.

For an example application, let’s consider the American household income
distribution from 2010. Roughly 9.1% of households made less than $10,000 in
2010, while roughly 87.9% of households made less than $100,000 in 2010. The
median income was $49,445, which implies that 50% of American households
made less than this income level. So our (x, π(x)) data points are (10,000,
0.091), (49,445, 0.50) and (100,000, 0.879). We can write a matrix equation
capturing these data in the logistic model.1 10, 000

1 49, 445

1 100, 000

[β0
β1

]
=


ln
(

0.091
1−0.091

)
ln
(

0.5
1−0.5

)
ln
(

0.879
1−0.879

)


Aβ = π.

Matlab will give us the projection here exactly as it has in the previous examples.
s

>> A = [1 10000; 1 49445; 1 10000];

>> pi = [log(0.091/(1-0.091)); log(0.5/(1-0.5)); log(0.879/(1-0.879))];

>> betaHat = inv(A’*A)*A’*pi

betaHat =

-0.1996

0.0000

The string of all zeros seems a little weird. We can ask Matlab to display more
digits of the decimal using the format command.

>> format long

>> betaHat = inv(A’*A)*A’*pi

betaHat =

-0.199617177625391

0.000004037155984
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So the unique logistic model that best fits the given data is

π(x) =
e−0.1996+4×10−6x

e−0.1996+4×10−6x + 1
.

Generlization

You might be guessing that we could use the same framework to perform other
types of regression, and you’d be right. But it still might be surprising just how
much we can get out of what we’ve developed so far. The exact same techniques
will find the least-squares solution(s) for any model of the form

y = β0f0(x) + β1f1(x) + . . .+ βnfn(x),

where each fi is some function. If we hadn’t had so much experience with
least-squares problems and their solutions, this claim might be quite literally
incredible. But with our results in hand, we know that no matter what the
functions f(x), we can form a linear system of the form Aβ = y in which the
entries of A depend on the functions f1, f2, . . . , fn and the exact x values of the
data points we’ve collected. But other these domestic differences, the process
works in exactly the same way.



Chapter 5

Coordinates and principal
component analysis

The sections in this chapter are geared at developing principal component anal-
ysis (PCA), a technique that breaks a large data set into various components
and then rates the components as to their contribution to the overall trends in
the data. As we saw with regression, the road towards a big tool, here PCA,
is dotted with all sorts of interesting and useful ideas. We’ll first encounter the
concepts of a basis for a subspace. As an aside, we’ll learn to characterize a
subspace using its dimension, and we’ll connect the dimension of the image of
a matrix A to the matrix rank of A. We’ll see that changing the basis in which
we describe a vector can be particularly handy in a lot of applications. We’ll
develop a number of specific examples, including changing to a orthonormal
basis and an eigenbasis.

5.1 Bases

Recall that a set of vectors v1,v2, . . . ,vk is linearly independent if the homoge-
neous equation

c1v1 + c2v2 + . . .+ ckvk = 0

has only the trivial solution c1 = c2 = . . . = ck = 0. Said another way, the set
v1,v2, . . . ,vk is linearly independent if none of the vectors can be written as a
linear combination of the others. While we had thought about this concept in
the past in terms of the solution sets of linear systems, we can also connect it
the newer concepts of vector (sub)spaces.

We say a set of vectors B = v1,v2, . . . ,vk forms a basis of a subspace H of
a vector space V if B is a linearly independent set, and H = span(B).

117
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For a first example, let H = R3. The collection B defined by

B =


1

0

0

 ,
0

1

0

 ,
0

0

1




both spans H and is linearly independent. So B is in fact a basis of H. Imagine
that we were to remove one of the vectors from B by defining

C =


1

0

0

 ,
0

1

0


 .

The new collection C is still linearly independent, but it does not span H. For
instance, any vector with a nonzero third component is not a linear combination
of the vectors from C. Imagine now that we were to add another vector to B by
defining

D =


1

0

0

 ,
0

1

0

 ,
0

0

1

 ,
1

1

1


 .

The collection D spans H, but the collection is not linearly independent, because1

0

0

+

0

1

0

+

0

0

1

−
1

1

1

 = 0.

This example shows us two fundamental ideas about a basis of a subspace
H: take a vector away from the basis and the collection no longer spans H;
add another vector to a basis, and the collection of vectors becomes linearly
dependent.

Note that a basis is not unique, that is, there may be many bases for the
same space. For instance, we can construct two different bases for R3.

B =


1

0

0

 ,
0

1

0

 ,
0

0

1


 , C =


1

0

0

 ,
1

1

0

 ,
1

1

1


 .

While the particular vectors in a basis for a space H can differ from basis to
basis, the number of vectors in the basis does not. We say that the dimension
of a subspace H is the number of vectors in any basis of H. We define the
subspace H = 0 to have dimension zero.
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5.1.1 Bases of the image and kernel

We can connect the idea of basis to the fundamental subspaces of a matrix A,
namely the image and kernel of A. Define

A =

1 1 0

1 3 −2

1 5 −4


=
[
v1 v2 v3

]
.

Let’s start investigating this matrix by row reducing the coefficient matrix A.

>> rref(A)

ans =

1 0 1

0 1 -1

0 0 0

Let’s think about what this means for vectors in the kernel of A. Defining
x = [x1, x2, x3]T , the first line reads x1 + x3 = 0, and the second line reads
x2 − x3 = 0. So any vector in the kernel of A has the form

x =

x1x2
x3

 =

−x3x3

x3

 = x3

−1

1

1

 .
Since x3 is free as indicated by the RREF, we have ker(A) = span([−1, 1, 1]T ).
Since [−1, 1, 1]T spans the kernel, and since any collection containing only a
single vector is linearly independent, we conclude that B = {[−1, 1, 1]T } is a
basis for the kernel of A. Here the kernel is 1-dimensional. In general, we can
compute one basis vector of the kernel of A per free variable in the RREF of A
using the same methodology we have here.

How about the image of A? We can start with the definition im(A) =
span(v1,v2,v3). Note that since the kernel of A is not just 0, the columns of A
are linearly dependent, and so {v1,v2,v3} does not form a basis for the image
of A. Any vector in the span has the form

x = c1v1 + c2v2 + c3v3.

But note that since [−1, 1, 1]T is in the kernel of A, we have −v1 + v2 + v3 = 0
so that v3 = −v1 +v2. We can use this information to rewrite the general form
of an element in the image of A.

x = c1v1 + c2v2 + c3(−v1 + v2)

= (c1 − c3)v1 + (c2 + c3)v2.
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Note what’s happened here: we originally assumed that x was an element of
the span of all three columns of A, but we’ve actually shown that x is in the
span of just two of them. This holds exactly because the columns of A are
not linearly independent. In effect, by taking into account the information we
learned about the kernel of A, we have whittled down the columns of A until
we have a linearly independent set that spans the image of A. Hence, we have
constructed a basis for the image of A, namely B = {v1,v2}. Note that v1 and
v2 were pivot columns of the row reduced form of A. This leads us to a general
observation: the collection of pivot columns of a matrix A form a basis for the
image of A. So the dimension of the image of A is equal to the number of pivot
columns in the RREF of A.

We can synthesize our results on bases for the kernel and image of an m×n
matrix A to form an interesting theorem. Note that each column of the RREF
of A is either a pivot column or represents a free variable. Since the dimension
of the kernel is equal to the number of free variables and the dimension of the
image is equal to the number of pivots and the total number of columns is n,
we have

dim(im(A)) + dim(ker(A)) = n.

This is the so-called rank-nullity theorem. The rank of a matrix is simply the
number of pivots, and the nullity is simply the number of free variables. So in
words, the rank-nullity theorem says that the sum of the rank and the nullity of
a matrix is equal to the number of columns in the matrix. We can use the rank-
nullity theorem to add two more statements to our list of equivalent conditions
for the invertibility of A. An n × n matrix A is invertible if and only if any of
the following are true.

• There exists A−1 such that A−1A = AA−1 = In.

• rref(A) = In.

• A has n pivots.

• The columns of A are linearly independent.

• The columns of A span Rn.

• det(A) 6= 0.

• Av = 0 has only the trivial solution v = 0.

• λ = 0 is not an eigenvalue of A.

• ker(A) = 0.

• im(A) = Rn.

• dim(im(A)) = n.

• dim(ker(A)) = 0.
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5.2 Coordinates

Given a basis B = {v1,v2, . . . ,vk} of a vector space V , we can define the
coordinates of any vector x defined by

x = c1v1 + c2v2 + . . .+ ckvk

as

[x]B =


c1

c2
...

ck

 .

Since the basis B spans V , we know that x can be expressed as a linear combi-
nation of the basis elements, and so these coordinates are guaranteed to exist.
We also know they must be unique, because B is linearly independent.

For a first example, consider the standard basis of R3

E =


1

0

0

 ,
0

1

0

 ,
0

0

1


 .

Then defining x = [x1, x2, x3]T , we can write the E-coordinates of x.

x1x2
x3

 = x1

1

0

0

+ x2

0

1

0

+ x3

0

0

1


⇒ [x]E =

x1x2
x3

 .
So the standard basis coordinates of a vector are just the vector itself. While
this might not seem too interesting, we’ll see that it is useful.

For a slightly more involved example, consider the basis

B =


1

0

0

 ,
1

1

0

 ,
1

1

1


 .
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Then the coordinates [x]B of the vector x = [1, 2, 3]T satisfy

c1

1

0

0

+ c2

1

1

0

+ c3

1

1

1

 =

1

2

3


1 1 1

0 1 1

0 0 1


c1c2
c3

 =

1

2

3


PE←B[x]B = x = [x]E .

So finding the B-coordinates of x is equivalent to solving a linear system. We
can do this any number of ways. Perhaps the easiest is to use the inverse of
PE←B.

>> PBtoE = [1,1,1;0,1,1;0,0,1];

>> Bcoords = inv(PBtoE)*[1;2;3]

Bcoords =

-1

-1

3

So we have [x]B = [−1,−1, 3]T .
Notice that the matrix PE←B changes the coordinates of x from basis B to the

standard basis. Perhaps not surprisingly, we call PE←B the change of coordinates
matrix from B to E . The columns of this matrix are simply the vectors of the
basis B written in the standard basis E . Since PE←B is always invertible (i.e.,
not just in the example we did above), we have another expression for the B-
coordinates of x.

[x]B = P−1E←Bx.

Since the matrix P−1E←B acts to change the E-coordinates of x to B-coordinates,
we can draw an interesting equivalence.

P−1E←B = PE←B.

In words, the matrix that transforms E-coordinates into B-coordinates is the
inverse of the matrix that transforms B-coordinates into E-coordinates. We can
confirm this numerically using the quantities we defined in our example.

>> PEtoB = inv(PBtoE)

PEtoB =

1 -1 0
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0 1 -1

0 0 1

>> PEtoB*[1;2;3]

ans =

-1

-1

3

>> PBtoE*[-1;-1;3]

ans =

1

2

3

Imagine now that we have two different basis B and C of the same vector
space V . We can use our knowledge change of coordinates between B and E and
between C and E to build up some intuition about changing coordinates directly
between B and C. From our work above, we know that we can express x both
in B-coordinates and C-coordinates.

x = PE←B[x]B

x = PE←C [x]C .

We can use this fact to define a matrix PC←B that changes B-coordinates into
C-coordinates.

PE←B[x]B = PE←C [x]C

(P−1E←CPE←B)[x]B = [x]C .

The action performed by the matrix PC←B = P−1E←CPE←B = PC←EPE←B on the
B-coordinates of x is composed of two parts. It first converts B-coordinates
to E-coordinates using PE←B. (Remember by “first” we mean the right-most
component, because matrix multiplication in the sense we use it moves from
right to left, not left to right like English text.) It then converts the resulting
E-coordinates into C-coordinates using PC←E = P−1E←C .

Let’s seen an example. Define

C =


1

0

1

 ,
2

1

2

 ,
1

1

0


 .

Then we can define coordinate change matrices for both B and C to the standard
basis E .
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>> PBtoE = [1 1 1; 0 1 1; 0 0 1];

>> PCtoE = [1 2 1; 0 1 1; 1 2 0];

We can assemble these matrices to form coordinate change matrices to convert
B-coordinates to C-coordinates and vice versa.

>> PCtoB = inv(PBtoE)*PCtoE

PCtoB =

1 1 0

-1 -1 1

1 2 0

>> PBtoC = inv(PCtoE)*PBtoE

PBtoC =

2 0 -1

-1 0 1

1 1 0

We can test the validity of these matrices with an example. Let’s calculate
the B-coordinates and C-coordinates of the vector x = [1, 2, 3]T using the old
methodology.

>> x = [1;2;3];

>> Bcoords = inv(PBtoE)*x

Bcoords =

-1

-1

3

>> Ccoords = inv(PCtoE)*x

Ccoords =

-5

4

-2

Using our matrices PC←B and PB←C , we can confirm that if we convert directly
from B-coordinates to C-coordinates and arrive at the correct coordinates.

>> Bcoords_check = PCtoB*Ccoords
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Bcoords_check =

-1

-1

3

>> Ccoords_check = PBtoC*Bcoords

Ccoords_check =

-5

4

-2

5.3 Diagonalization

In this section, we’ll connect two of the big ideas we’ve seen so far in the course:
eigenthings and change of coordinates. While we didn’t have the language of
bases at the time, we saw in our investigation of dynamical systems that repre-
senting an initial condition x0 as a linear combination of the eigenvectors of the
transition matrix allowed us to discover concepts like the dominant eigenpair.
This was only possible because the eigenvectors formed a basis of Rn, and so
every initial condition x0 could be represented as a unique linear combination of
the eigenvectors. Here we’ll formalize these connections and bring in new ones.
We’ll use all of these tools in our discussion of the singular value decomposition
and principal component analysis.

5.3.1 Eigenbases

Imagine that a n×nmatrixA has n linearly independent eigenvectors v1,v2, . . . ,vn
with associated distinct eigenvalues λ1, λ2, . . . , λn. We now know that these vec-
tors form a basis of Rn as they are linearly independent and span the space.
We call V = {v1,v2, . . . ,vn} an eigenbasis of Rn. The matrix that changes
coordinates from V to the standard basis E is defined by

PE←V =
[
v1 v2 · · · vn

]
.

We’ll abbreviate this change of coordinate matrix simply as P where no confu-
sion should occur.

We can capture the information the V-coordinates of the image of all eigen-
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vectors in a single matrix equation. Suppose we define

D =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

 ,

so that the eigenvalues of A are located along the main diagonal of D. We can
stack the standard coordinates

AP =
[
Av1 Av2 . . . Avn

]
PD =

[
λ1v1 λ2v2 . . . λnvn

]
⇒ AP = PD

Since P is invertible, we can conclude that A = PDP−1, where D is a diagonal
matrix. We say that a matrix A is diagonalizable if there exists an invertible
matrix P and a diagonal matrix D such that A = PDP−1. So our work above
has shown that a n× n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors.

Now, determining whether a matrix has a collection of linearly independent
eigenvectors can be a tough proposition. We’ll see later in this section that
in special cases we can conclude that such an eigenbasis does exist. But in
most cases, we just need to compute the eigenvalues and check whether they’re
independent. Notice that given a matrix A, the matrices P and D are exactly
the matrices returned by the command eig(A) in Matlab.

Example 15: Is the matrix

A =

1 2 0

0 3 0

2 −4 2


diagonalizable?

To conclude that A is diagonalizable, we need to confirm that the eigenvec-
tors of A are linearly independent. Matlab gives

>> A = [1 2 0; 0 3 0; 2 -4 2];

>> [P,D] = eig(A)

P =

0 0.4472 0.4082

0 0 0.4082

1.0000 -0.8944 -0.8165
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D =

2 0 0

0 1 0

0 0 3

To confirm that the columns of P are linearly independent, we need only row
reduce P . Matlab can help with this, too.

>> rref(A)

ans =

1 0 0

0 1 0

0 0 1

Since there are no free variables in the RREF, we conclude that the eigenvectors
of A are linearly independent. So A is diagonalizable. Just to make ourselves
feel better, we can check that A = PDP−1.

>> P*D*inv(P)

ans =

1 2 0

0 3 0

2 -4 2

Example 16: Is the matrix

A =

[
3 1

0 3

]

diagonalizable?

Again, we need to check the linear independence of the eigenvectors of A.
Matlab gives

>> A = [3 1; 0 3];

>> [P,D] = eig(A)

P =

1.0000 -1.0000

0 0.0000
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D =

3 0

0 3

You might be able to tell by eye that the columns of P are not linearly inde-
pendent. But to check more formally, let’s row reduce P .

>> rref(P)

ans =

1 -1

0 0

Since there is a free variable in the RREF of P , we conclude that the columns
of P are not linearly independent. Thus A is not diagonalizable.

In general it is not possible to tell a priori whether an arbitrary matrix is
diagonalizable. But for specific classes of matrices we can make more headway.

5.3.2 Symmetric matrices

Recall that a matrix A is symmetric if AT = A. We saw in Studio 10 that
symmetric matrices have real eigenvalues. But their interesting properties do
not stop there. Let’s build some intuition with a particular example. Define the
symmetric matrix

A =

[
1 2

2 1

]
.

We can compute the eigenpairs of A using Matlab.

>> A = [1 2; 2 1];

>> [P,D] = eig(A)

P =

-0.7071 0.7071

0.7071 0.7071

D =

-1 0

0 3
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Not only are the eigenvectors of A linearly independent, they’re actually orthog-
onal! While this may seem like it worked out this way because of the simple
example we chose, it is in fact a property of all symmetric matrices. To convince
ourselves of this, imagine that v1 and v2 are two eigenvectors of A with distinct
eigenvalues λ1 and λ2, respectively. Then

λ1(v1 ◦ v2) = λ1v
T
1 v2

= (λ1v1)Tv2

= (Av1)Tv2

= vT1 A
Tv2.

Now, since A is assumed to be symmetric, we have AT = A.

λ1(v1 ◦ v2) = vT1 Av2

= vT1 λ2v2

= λ2(v1 ◦ v2).

This implies that (λ1 − λ2)(v1 ◦ v2) = 0, which can only be true if λ1 = λ2 or
v1 ◦ v2 = 0. Since we can assumed the eigenvalues here are distinct, we have
λ1 6= λ2. Therefore it must be the case that the eigenvectors are orthogonal. We
say that a matrix A is orthogonally diagonalizable if there exists an invertible
matrix P whose columns are mutually orthogonal and a diagonal matrix D
such that A = PDP−1. Our work has shown that any symmetric matrix is
orthogonally diagonalizable. Note that if we scale each eigenvector vi so that
‖vi‖2 = 1, then change of coordinate matrix P becomes orthogonal so that
P−1 = PT . Matlab does this scaling automatically.

>> P’*P

ans =

1.0000 0

0 1.0000

We can verify that in this case A = PDPT .

>> P*D*P’

ans =

1.0000 2.0000

2.0000 1.0000

Note that diagonalization, whether orthogonal or not, only applies to square
matrices. To deal with rectangular matrices, we will need a more powerful tool,
namely the singular value decomposition.
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5.4 Principal Component Analysis

In 1993, the heights and weights of 25,000 children between the ages of 0 and 18
were measured in Hong Kong. Such a large sample is sure to have interesting
information buried within it. At the same time, drawing conclusions from such
a large collection of data might seem daunting. We’ve seen one tool, namely
least-squares, that would allow us to glean some information from the data. In
this section, we’ll learn about another: principal component analysis. Using this
technique, we’ll decompose the data (using an orthogonal change of coordinates)
into ranked components which are mutually uncorrelated. This in effect will
reveal the dominant trend in the data, followed by the next most prevalent
trend assuming all linear dependence on the dominant trend has been removed,
the third most important trend assuming all linear dependence on the first two
has been removed, and so on. Moreover, we’ll be able to quantify just how much
of the total variation of the data each trend describes.
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Figure 5.1: Height and weight data from 200 observations

5.4.1 Pre-processing data

For simplicity and tractability in our first example, we’ll just deal with a 200
person subset of the data described above. As in statistics, we use the variable
N = 200 to describe the number of observations we have. Imagine we bundle
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these observations in a matrix X,

X =


h1 w1

h2 w2

...
...

h200 w200

 =
[
h w

]
=


x1

x2

...

x200

 ,

so that each row contains the height and weight data (in order) of a particular
child. It will be helpful have notation describing both the rows and the columns
of the observation matrix X; let xi be row i, which describes the height and
weight of a particular child, and let h and w be the columns containing all
height and weight data, respectively. To help us get an intuitive sense of what
the data look like, we can inspect Figure 5.1 in which the 200 data points are
plotted.
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Figure 5.2: Demeaned height and weight data from 200 observations

Typically when we are exploring a data set, we’re interested in its variability.
This variability is opposed to the mean about which the variation occurs. To
get at the variation of the data more directly, we need to de-mean the data by
subtracting the mean height h from the height data h and the mean weight w
from the weight data w. The mean height in this data set is h = 67.95 and the
mean weight is w = 127.22. (This can be computed easily by using mean(X),
with X defined as above, in Matlab.) We can define the mean-deviation form
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of the data by

B =


h1 − h w1 − w
h2 − h w2 − w

...
...

h200 − h w200 − w

 =
[
ĥ ŵ

]
=


x̂1

x̂2

...

x̂200

 ,

(Try B = X - ones(200,1)*mean(X) in Matlab. The harder part is con-
vincing yourself that ones(200,1)*mean(X) has h in the first column and w in
the second column.) Let’s see what these demeaned data look like in Figure
5.2. Notice that the “shape” of the data is the same as it was before, but now
the data are horizontally and vertically centered about the origin.

5.4.2 Sample covariance matrix

We can get even more specific about the variation in the data. Recall that the
sample covariance between two random variables x and y is defined by

σs(x,y) =
1

N − 1

N∑
i=1

(xi − x)(yi − y).

We can use the notation we’ve developed here and some linear algebra to greatly
simply this expression.

σs(x,y) =
1

N − 1

N∑
i=1

(xi − x)(yi − y)

=
1

N − 1

N∑
i=1

x̂iŷi

=
1

N − 1
(x̂ ◦ ŷ).

So we conclude that covariance between two data sets is really a statement about
the inner product of their mean deviation forms. We can efficiently package all
the covariance information contained in the data set into the covariance matrix
S in which S(i, j) represents the covariance between variable i and variable j.
The covariance of a variable with itself is known as its variance. With the
height-weight data set, the covariance matrix is

S =
1

N − 1

[
ĥ ◦ ĥ ĥ ◦ ŵ

ŵ ◦ ĥ ŵ ◦ ŵ

]



5.4. PRINCIPAL COMPONENT ANALYSIS 133

But notice that we can repackage S into a very convenient form by using our
knowledge of matrix multiplication.

S =
1

N − 1

[
ĥ

ŵ

] [
ĥ ŵ

]
=

1

N − 1
BTB.

Computing this is a breeze in Matlab.

>> S = 1/(N-1)*B’*B

S =

3.7650 12.9240

12.9240 143.0645

Let’s confirm that this result matches the intuition we’ve built around the figures
we’ve seen so far. The variance of the height data is 3.77, while the variance
of the weight data is 143.06. These are quite different, and so we should see
such a difference reflected in Figure 5.2. Indeed we do, since the height data
has a spread of only about 8 inches, while the weight data has a spread of
roughly 60 pounds. We see this differing spreads reflected in the differences in
the variances.

We can sum the individual variances of the variables to compute the total
variance. Recall that the sum of the main diagonal elements of a matrix is
known as its trace. Then the trace of the covariance matrix is the total variance
of the data set. Here the total variance is tr(S) = 3.77 + 143.06 = 146.8296. In
Matlab, we can write trace(S) to compute the total variance.

5.4.3 Eliminating covariance

The covariance between the height and weight data show that there is clearly
some dependence between the two variables. While this is not surprising, it
might be inconvenient in our analysis of the data. To wring the most information
from the observations we have, we need uncorrelated variables, that is, variables
which are linearly independent from one another. In this case, the covariance is
zero. Mathematically, we would like to find a change of coordinates such that
S becomes a diagonal matrix. We can bring all the tools we’ve manufactured
in the previous sections to bear on this problem.

From our earlier work, we know that the basis that diagonalizes S is exactly
its eigenbasis. Said another way, we can diagonalize S using a matrix P whose
columns are the eigenvectors of S. This gives

S = PDP−1,

where D is a diagonal matrix containing the eigenvalues of S along its main
diagonal. But when we first developed diagonalization, there was some doubt
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that as to whether an arbitrary matrix could be diagonalized. We can sidestep
this concern here by noting that the covariance matrix S is symmetric:

ST =
1

N − 1
(BTB)T =

1

N − 1
BT (BT )T =

1

N − 1
BTB = S.

Hence, S is certainly diagonalizable, and moreover we know that the eigenvectors
of S are mutually orthogonal.
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Figure 5.3: Principal components of the data set, with the length of each vec-
tor dictated by the standard deviation

√
λi. We have switched the axes and

forced the aspect ratio to 1:1 in order to show the orthogonality of the principal
components in a convenient form.

We call the eigenvectors of S the principal components of the data set, and
we rank a principal component according to the relative size of its associated
eigenvalue. For instance, given our data set, we have

>> [P,D] = eig(S)

P =

-0.9958 0.0916

0.0916 0.9958

D =

2.5761 0

0 144.2535

So the first principal component u1 = [0.0916, 0.9958]T represents the new vari-
able

ŷ1 = 0.0916ĥ+ 0.9958ŵ,

and the second principal component u2 = [−0.9958, 0.0916]T represents the new
variable

ŷ2 = −0.9958ĥ+ 0.0916ŵ.
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We can see these principal components graphically in Figure 5.3.
We should interpret the first principal component as the dominant trend

in the data. More specifically it shows that the ratio of weight to height in
the children observed is roughly 0.9958/0.0916 = 10.8712. Said another way,
the dominant trend predict that for every inch a child grows, she will gain
10.8712 pounds. The second principal component is the most dominant trend
after all linear dependence with the first principal component as been removed
from each data point. Accordingly, the second principal component predicts
something completely different than the first principal component: for every
inch a child grows, she loses 0.0920 = 0.0916/0.9958 pounds. Any data point can
be represented by a linear combination of the uncorrelated trends represented
by the principal components.

5.4.4 Capturing variance

Principal component analysis has one more important thing to tells us about
how our data are distributed among the various principal components. First,
let’s make the observation that the total variance in the original data set, tr(S),
and the total variance in the data set after the change in coordinates, tr(D),
are equal:

>> trace(S)

ans =

146.8296

>> trace(D)

ans =

146.8296

This is no coincidence, as we can show. We’ll have to use a fact about the trace
of a product of matrices: tr(AB) = tr(BA). Then note that

tr(S) = tr(P (DP−1))

= tr((DP−1)P )

= tr(D).

So the trace of any two similar matrices are equal. (Note in particular that P
does not have to be orthogonal as it is here.)

The percentage of the total variance captured by the new variable ŷi is
λi/tr(S). For instance, the new variable ŷ1 = 0.0916ĥ+0.9958ŵ represented by
the first principal component corresponding to λ1 = 144.2535 represents 98.25%
of the total variance in the data. The new variable ŷ2 = −0.9958ĥ + 0.0916ŵ
represented by the second principal component corresponding to λ2 = 2.5761
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captures the remaining 1.75% of the total variance. So we could effectively
keep only the first principal component and keep much of the observed variance
in the data. In this way, very high-dimensional data can be reduced to more
manageable dimensionality by keeping the principal components that together
account for a chosen percentage (e.g., 90%, 99%, 99.99%) of the total variance.
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A.1 Studio 1.1

(0) Write the augmented matrix, the row reduced echelon form matrix, and
the general solutions of the linear systems below.

(a)

3x1 + 6x2 = −3

5x1 + 7x2 = 10

(b)

x1 − 5x2 + 4x3 = −3

2x1 − 7x2 + 3x3 = −2

−2x1 + x2 + 7x3 = −1

(c) Do the three lines 2x1 +3x2 = −1, 6x1 +5x2 = 0 and 2x1−5x2 = 7 have
a common point of intersection? If so, what is it? If not, how are you sure?
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(1) You have 32 coins in denominations of pennies (1 cent each), nickels (5
cents each), and dimes (10 cents each) worth $1.00 (100 cents) in total.

(a) Write a systems of a linear equations that describes this system.

(b) Solve the system of linear equations you found in the previous part of
this question.

(c) How many coins of each type do you have?
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(2) Find the interpolating polynomial p(t) = a0 + a1t + a2t
2 for the data

(1,6), (2,15), (3,28). That is, find a0, a1 and a2 such that

a0 + a1(1) + a2(1)2 = 6

a0 + a1(2) + a2(2)2 = 15

a0 + a1(3) + a2(3)2 = 28
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(3) (a) A system of linear equations with fewer equations than unknowns is
sometimes called underdetermined. Can such a system have a unique solution?

(b) A system of linear equations with more equations than unknowns is
sometimes called overdetermined. Can such a system be consistent?

(c) Suppose the coefficient matrix of a system of linear equations has a pivot
in each row. Is the system consistent? Explain your answer.

(d) Suppose the coefficient matrix of a system of linear equations has a pivot
in each column. Is the system consistent? Explain your answer.
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(4) (a) Generate a random coefficient matrix with 3 row and 3 columns
using the rand(3,3) command in Matlab. Does the matrix you generated
correspond to linear system with a unique solution? How do you know?

(b) Repeat the procedure above 10 times. Do you notice a trend? Make a
hypothesis about whether a random linear system of 3 equations in 3 unknowns
has a unique solution.

(c) Is it possible that a linear system with 3 equations in 3 unknowns has no
solutions? Stated another way, can a system of 3 linear equations in 3 variables
be inconsistent? Does this fit with your hypothesis from above?
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A.2 Studio 1.2

(0) (a) Does the vector b =

1

2

3

 lie in the span of the vectors v1 =

2

2

2

,

v2 =

1

2

3

, v3 =

2

1

3

?

(b) Determine whether there is a solution to the matrix equation72.0 56.0 8.0

74.0 69.0 74.0

95.0 13.0 11.0

x =

 3.27

33.67

90.16

 .

(c) Determine whether the linear system

46.0x1 + 11.0x2 + 56.0x3 = 47.22

36.0x1 + 100.0x2 + 30.0x3 = 98.42

is consistent.
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(1) Let A be a m × n matrix. Prove that if Ax = b, then x ∈ Rn and
b ∈ Rm.

(2) Let A be an m× n matrix. Prove that if the matrix equation Ax = b
has a solution x ∈ Rn for every choice of b ∈ Rm, then A must have a pivot
position in every row.

(3) Let A be a m × n matrix, and u and v be vectors in Rn. Prove that
A(u + v) = Au +Av.
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(4)

B =


1 4 1 2

0 1 3 −4

0 2 6 7

2 9 5 −7

 , C =


1 4 1 2

0 1 3 −4

0 2 6 7

2 9 6 −7

 ,

D =

1 4 1 2

0 1 3 −4

0 2 6 7

 , E =


1 4 1

0 1 3

0 2 6

2 9 6


(a) Can every vector in R4 be written as a linear combination of the columns

of B?

(b) Do the columns of C span R4?

(c) Does the matrix equation Dx = b have a solution for every b ∈ R3?

(d) Do the columns of E span R4?
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(5) Define

A =


10 −7 1 4 6

−8 4 −6 −10 −3

−7 11 −5 −1 −8

3 −1 10 12 12

 .
(a) Do the columns of A span R4?

(b) Find a column of A that can be deleted and yet have the remaining
matrix columns still span R4.

(c) Can you delete more than one column and yet have the remaining matrix
columns still span R4?
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A.3 Studio 1.3

(0) Suppose weve been tracking 5 industries over the last several years, and
constructed the following matrix describing how individual industries buy the
output of other industries.

C =


0.1 0.6 0.2 0 0.3

0.1 0.2 0 0.7 0.1

0.3 0 0.1 0.1 0.2

0.4 0.1 0.4 0.2 0.3

0.1 0.1 0.3 0 0.1


As weve seen before with these type of matrices, the matrix entry (i, j) is the
percent of the output of industry j which is bought by industry i.

(a) Explain in words why the sums of each column must be equal to 1.

(b) Explain in words by the row sums need not be equal to 1.
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(c) Suppose the industry i has a total output pi, measured in dollars. How
much should each industry produce in order for all industries to have their costs
exactly balance their revenue?
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(1) You and a friend have opened a boutique cupcake shop, and together
you’re trying to get a handle on your business total cost as a function of the
total number of cupcakes produced. You currently have three data points: you
know that the fixed cost of your business hovers around $700 per week; in the
first week you produced 100 cupcakes and your total cost was $775; in the sec-
ond week you produced 200 cupcakes and your total cost was $800.

(a) Your cofounder obviously didn’t have a Babson education: he thought
that he had found a line that perfectly fit all three data points. Use linear
algebraic reasoning to convince him that this can’t be the case.

(b) After giving it another try, your cofounder claims that he has found
several quadratic models C(x) = c0 + c1x + c2x

2 which perfectly match the
data. Either prove your cofounder right by producing an infinite family of mod-
els that perfectly predict the data, or disprove his claim by showing that there
is a unique solution or no solution to this problem. (Not that simply produc-
ing a solution is not enough! How do you know there aren’t more, for instance?)

(c) Motivated by your success with the quadratic modeling exercise, you’ve
recently been wondering if there’s a cubic total cost model C(x) = c0 + c1x +
c2x

2 + c3x
3 that will even perfectly predict the data. Use linear algebraic rea-

soning to show how many of these solutions must exist.
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(2) An economy has four sectors: agriculture, manufacturing, services and
transportation. Agriculture sells 20% of its output to manufacturing, 30% to
services, 30% to transportation and retains the rest. Manufacturing sells 35% of
its output to agriculture, 35% to services, 20% to transportation and retains the
rest. Services sells 10% of its output to agriculture, 20% to manufacturing, 20%
to transportation and retains the rest. Transportation sells 20% of its output
to agriculture, 30% to manufacturing, 30% to services and retains the rest.

(a) Construct the exchange matrix for this economy.

(b) Find a set of equilibrium prices for the economy if the value of trans-
portation is $10.00 per unit.
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(c) The services sector launches a successful “eat farm fresh” campaign, and
increases its share of the output from the agricultural sector to 40%, where
as the share of agricultural production going to manufacturing falls to 10%.
Construct the exchange matrix for this new economy.

(d) Find a set of equilibrium prices for this new economy if the value of
transportation if still $10.00 per unit. What effect has the service sectors cam-
paign had on the equilibrium prices for the sectors of this economy? w
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A.4 Studio 1.4

(0) Show that the columns of a matrix A are linearly dependent if A has more
columns than rows.

(1) Give an example of a matrix A which has fewer columns than rows and
whose columns are linearly dependent.

(2) Suppose A is a matrix which has the property that for any b ∈ Rm,
there exists at most one solution x ∈ Rn. Explain why the columns of A must
be linearly independent.
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(3) Let’s take another look at the 5 industry economic model we examined
in the last studio. The matrix describing how these industries bought from and
sold to one another was

C =


0.1 0.6 0.2 0 0.3

0.1 0.2 0 0.7 0.1

0.3 0 0.1 0.1 0.2

0.4 0.1 0.4 0.2 0.3

0.1 0.1 0.3 0 0.1



(a) Are the columns of C linearly independent?

(b) How many, if any, production vectors p lead to a given total cost vector
c?

(c) Last time we were trying to solve the equation (C − R)p = 0 in order
to determine the total production levels p necessary for all industries to break
even at the same time. We defined R to be the identity matrix with 5 rows and
columns I5. Are the columns of C −R linearly independent?
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(d) How many, if any, production vectors p lead to a break even scenario?

(e) Generate another cost matrix C, say for 3 industries. Are the columns
of C linearly independent? Are the columns of C −R linearly independent?

(f) Can you logically justify (meaning without Matlab) why in general the
columns of C would be linearly independent but the columns of C − R would
not?
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A.5 Studio 2.1

(0) Define matrices

A =

 2.0 9.0 22.0 51.0

12.0 96.0 47.0 45.0

23.0 93.0 47.0 4.0

 , B =

14.0 84.0 81.0

66.0 93.0 39.0

31.0 3.0 58.0

 , C =


76.0 96.0 13.0

34.0 2.0 65.0

92.0 11.0 67.0

17.0 66.0 27.0


(a) Is AB defined? If so, what is its size?

(b) Is BA defined? If so, what is its size?

(c) Is AC defined? If so, what is its size?

(d) Is CA defined? If so, what is its size?

(e) Is ABC defined? If so, what is its size?

(f) Is CBA defined? If so, what is its size?
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using RREF the total production necessary to satisfy the final

demands represented by the vector

d =

10

20

30

 .
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(2) If AB = 0 but neither A nor B is zero, we call A and B zero divisors.
Note that there are no zero divisors in the real numbers, so this isn’t something
we may have encountered so far. Matrices can be zero divisors. For instance, if
A and B are

A =

[
1 1 1 1

1 1 −1 −1

]
B =


1 −1

−1 1

1 1

−1 −1


show that AB is the zero matrix, so that both A and B are zero divisors.
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(3) (a) Unlike the real numbers, matrices do not typically commute, mean-
ing that AB 6= BA in general. To verify this statement, generate two random
3 × 3 matrices A and B and verify that they do not commute, that is, that
AB 6= BA.

(b) Above we said that matrices do not commute in general. But some
matrices do commute. Come up with an example of matrix that commutes
with any square matrix A.
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(4) In the real numbers, if xy = xz, then y = z, because we can cancel the
x on each side. But with matrices, things are a little more complicated.

A =

[
3 4 5 6

7 8 9 10

]
, B =

[
2 3 4 5

6 7 10 11

]
, C =


1 −1

−1 1

1 1

−1 −1


(a) Show that AC = BC, and note that A 6= B.

(b) Think about how zero divisors and cancellation are related. Use this to
come up with another example of matrices A and B such that AC = BC but
A 6= B.
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A.6 Studio 2.2

(0) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vector

d =

10

20

30

 .
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vectors

d1 =

11

20

30

 , d2 =

10

20

30

 .

(b) Confirm that the difference in the productions you found in the previous
part is the first column of (I − C)−1.

(c) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

21

30

 , d2 =

10

20

30

 .
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(d) Confirm that the difference in the productions you found in the previous
part is the second column of (I − C)−1.

(e) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

20

31

 , d2 =

10

20

30

 .

(f) Confirm that the difference in the productions you found in the previous
part is the third column of (I − C)−1.
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(g) Show that the additional production necessary to satisfy one additional
unit of final demand for industry i is exactly the ith column of (I − C)−1.
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(2) (a) Consider the parameterized model

x =

[
k 0.5

0.6 0.2

]
x + d

= Ckx + d.

For what values of k does the inverse C−1k exist?

(b) Now consider the parameterized model

x =

[
0.1 0.5

k 0.2

]
x + d

= Bkx + d.

For what values of k does the inverse B−1k exist?

(c) Now consider the parameterized model

x =

[
0.1 `

k 0.2

]
x + d

= A`,kx + d.

For what values of ` and k does the inverse A−1`,k exist?
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(3) Generally, we can write a polynomial of degree n− 1 as

p(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1.

In order for p(x) to match our n data points exactly, it must be the case that
p(xi) = yi for every i = 1, 2, . . . , n. But each of these equalities amounts to
a linear combination of the coefficients a0, a1, . . . , an−1. We can encode these
linear combinations in a matrix equation:

1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...

1 xn x2n · · · xn−1n



a0

a1
...

an−1

 =


y1

y2
...

yn


V a = y.
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A.7 Studio 2.3

(0) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vector

d =

10

20

30

 .
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vectors

d1 =

11

20

30

 , d2 =

10

20

30

 .

(b) Confirm that the difference in the productions you found in the previous
part is the first column of (I − C)−1.

(c) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

21

30

 , d2 =

10

20

30

 .
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(d) Confirm that the difference in the productions you found in the previous
part is the second column of (I − C)−1.

(e) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

20

31

 , d2 =

10

20

30

 .

(f) Confirm that the difference in the productions you found in the previous
part is the third column of (I − C)−1.
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(g) Show that the additional production necessary to satisfy one additional
unit of final demand for industry i is exactly the ith column of (I − C)−1.



170 APPENDIX A. STUDIO PROBLEMS

(2) (a) Consider the parameterized model

x =

[
k 0.5

0.6 0.2

]
x + d

= Ckx + d.

For what values of k does the inverse C−1k exist?

(b) Now consider the parameterized model

x =

[
0.1 0.5

k 0.2

]
x + d

= Bkx + d.

For what values of k does the inverse B−1k exist?

(c) Now consider the parameterized model

x =

[
0.1 `

k 0.2

]
x + d

= A`,kx + d.

For what values of ` and k does the inverse A−1`,k exist?
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(3) Generally, we can write a polynomial of degree n− 1 as

p(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1.

In order for p(x) to match our n data points exactly, it must be the case that
p(xi) = yi for every i = 1, 2, . . . , n. But each of these equalities amounts to
a linear combination of the coefficients a0, a1, . . . , an−1. We can encode these
linear combinations in a matrix equation:

1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...

1 xn x2n · · · xn−1n



a0

a1
...

an−1

 =


y1

y2
...

yn


V a = y.
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A.8 Studio 3.2

(0) Suppose that your car rental company has 2 locations, L1 and L2, that
together house 400 cars. Data indicate that on average 90% of the cars rented
at L1 are returned to L1, and 80% of cars rented at L2 are returned to L2.
(Thankfully, all cars are returned.)

(a) Write the transition matrix of this dynamical system.

(b) Assume that cars are rented and returned weekly, and that each week
every car in both locations is rented. Calculate the distribution of cars after
week 1, week 3, and week 10, given an even initial distribution of cars.
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(c) Try several other initial conditions. Is the long term behavior of the car
distribution the same?

(d) Calculate the eigenpairs of the transition matrix, and use them to predict
the long term behavior of the system. What is the ratio of the number of cars
at each location?

(e) Suppose now that you have 600 total cars. Is the long term behavior of
the system the same as before? What is the ratio of the number of cars at each
location?
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(1) In one ecological model, the population of owls ot and population of
rats rt (in thousands) at time t (in months) is related to the populations at time
t+ 1 through the following matrix equation:

[
ot+1

rt+1

]
=

[
.5 .4

−p 1.1

][
ot

rt

]
xt+1 = Txt.

The entry p is known as the predation rate.
(a) What is the meaning of each entry of matrix?

(b) What are the units of the predation rate p? In other words, how is p
being measured in this model?

(c) Assume that p = 0.1. What happens to the populations in the long
term?

(d) Assume that p = 0.2. What happens to the populations in the long
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term?
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(2) One approach to conservation is through so called stage-based population
modeling. Typically in these models, we consider on the female members of the
species, because in biological terms males are often cheap; there are many males,
and most of them are not going to reproduce anyway. For instance, female orcas
have three stages: yearlings, juveniles, and mature. The yearly state transition
matrix for the female orca population is

T =

 0 0.0043 0.1132

0.9775 0.9111 0

0 0.0736 0.9534


(a) Interpret T (2, 1), T (3, 3), T (1, 3) and T (3, 2) in terms of the stage-based

population model.

(b) What is the long term behavior of the population of female orcas? What
is the ratio of juveniles to adults in the long term? What is the ratio of yearlings
to adults in the long term?
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(3) Imagine that we model our business based on two types of customers:
one-time customers and repeat customers. These populations are disjoint, so
that every current customer is either a one-time or a repeat, but no customer
is both. Naturally (and hopefully), a one-time customer can become a repeat
customer. From data you’ve gathered, you know that each month 40% of your
one-time customers remain one-time customers. Around 10% of your repeat
customers refer a new customer each month. You also know that on average
95% of repeat customers continue to buy your goods, and that on average 30%
of one-time customers convert to repeat customers. (A common metric that
I’ve heard is that if a customer has not bought something from you in 3 months
then they are removed from the customer group.)

(a) Write a transition matrix for this model.

(b) High end industries often decide that repeat customers are the segment
on which they want to focus. After all, the pool containing their potential clien-
tele is small, so it makes sense to work hard to keep any customers you have.
Cheap products often rely on the fact that they will have a large number of con-
stantly changing one-time customers to support their business. Whatever your
strategy, it’s important make sure that you know what you’re getting yourself
into. In the long term, what will the ratio of one-time to repeat customers be
for the business in this model?
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(4) Suppose your business has a three tiered customer loyalty program.
Every customer opting in to the program is assigned to either the bronze, silver
or gold category. Customers do not need to progress through the levels in order;
for instance, a customer can go directly from being a bronze category member
to being a gold category member. Users can also slip; for instance, a customer
can go from being a silver category member to being a bronze category member.
Let bt, st and gt be number of customers in each of these populations in month
t. Through data collection and analysis, you have proposed a model for the
rates at which customers transition between these class from month to month.
You can express your model using the following matrix equation:bt+1

st+1

gt+1

 =

0.4 0.6 0.1

0.6 0.2 0.2

0.1 0.2 0.8


btst
gt


xt+1 = Cxt

(a) Describe in words the meaning of entry (3,1) of C.

(b) Find the eigenvalues and associated eigenvectors of C.

(c) In the long term, what percentage of the total number of customers
enrolled in your loyalty program do you expect to be in the gold category?
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A.9 Studio 3.3

(0) Define

C =

[
13 −4

−4 7

]
.

(a) Use the characteristic equation to determine the eigenvalues of C.

(b) Using the eigenvalues you found in the previous part, compute the eigen-
vectors of the matrix.
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(1) Consider an animal species that has two life stages: juvenile (up to 1
year old) and adult. Suppose that females give birth each year to an average of
1.6 female juveniles. Each year, 30% of the juveniles survive to become adults,
and 80% of the adults survive.

(a) Construct a stage-based population model for this species. Develop a
matrix T that links the populations in year t, xt to the populations in year t+1,
xt+1 via xt+1 = Txt.

(b) What is the ratio of adults to juveniles in the long term?
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(c) Suppose now that the average number of female offspring an adult bears
each year is represented by a parameter k. Use the characteristic equation of
the matrix Tk to find the dominant eigenpair of the system. What is the effect
of k on the eigenvalues?

(d) What is the long term ratio of adults to in the preceding part? If the
distribution depends on k, be sure to clearly indicate how.
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(e) Now let ` represent the percentage of juveniles that survive to adulthood,
and assume as before that each female adult bears on average 1.6 female offspring
per year. Use the characteristic equation of the matrix T` to find the dominant
eigenpair of the system. What is the affect of ` on the eigenvalues?

(f) What is the long term ratio of adults to in the preceding part? If the
distribution depends on `, be sure to clearly indicate how.
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(2) Let (v, λ) be an eigenpair of an invertible matrix A. Show that (v, 1/λ)
is an eigenpair of A−1.

(3) Show that if λ is an eigenvalue of A, then λ is an eigenvalue of AT .
(Hint: consider how A− λI and AT − λI are related.)

(a) Show that if λ is an eigenvalue of AT , then λ is an eigenvalue of A.
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(4) We say that a matrix T is column stochastic if it has only non-negative
entries and its columns each sum to 1. For an example, our transition matrix
from the bike rental example

T =

[
0.8 0.4

0.2 0.6

]

is column stochastic.
(a) Using the characteristic equation, compute the eigenvalues of T .

(b) Using the eigenvalues you found in the previous part, compute the as-
sociated eigenvectors of T .
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(c) Show that any 2 × 2 column stochastic matrix T has λ = 1 as an
eigenvalue. (Hint: let T (1, 1) = p and T (2, 2) = q.)

(d) Show that for any column stochastic matrix T , the vector [1, 1, . . . , 1]T is
an eigenvector of TT with eigenvalue λ = 1. Use a previous problem to conclude
that λ = 1 is an eigenvalue of T . Comment on the relevance of this result to
the long term distribution of a dynamical system with transition matrix T .
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A.10 Studio 3.4

(0) Give the scaling factor r and the rotation angle φ for the following matrices:

A =

[√
3 1

−1
√

3

]
, B =

[
4 −3

3 4

]
, C =

[
40 −9

9 40

]
.



A.10. STUDIO 3.4 187

(1) The population of spotted owls can be broken into three classes: juve-
niles, subadults and adults. These populations can be related to one another
through the dynamical systemjt+1

st+1

at+1

 =

 0 0 0.33

0.18 0 0

0 0.71 0.94


jtst
at


xt+1 = Txt.

(a) What is the meaning of entry T (3, 2) in this model? What is the meaning
of entry T (1, 3)?

(b) What is the long term fate of the population of owls? Is the ratio of the
populations constant in the long term?
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(c) Now assume that through concerted conservation efforts, the percentage
of juveniles surviving to subadulthood has been increased to 50% from the
original model. What is the long term fate of the population of owls? Is the
ratio of the populations constant in the long term?
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(2) One approach to conservation is through so called stage-based population
modeling. For an example, imagine that American bison females can be divided
into calves (up to 1 year old), yearlings (1 to 2 years old), and adults. Suppose on
average 42 female calves are born each year per 100 adult females. (Only adults
produce offspring.) Each year, about 60% of the calves survive, 75% of the
yearlings survive, and 95% of the adults survive. For t ≥ 0, let xt = [ct yt at]

T

be the population vector representing the females in the herd.
(a) Construct a matrix A for the herd so that xt+1 = Axt for t ≥ 0.

(b) Show that the buffalo herd is growing, determine the expected growth
rate after many years, and give the expected number of calves and yearlings
present per 100 adults.
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(3) For a 2 × 2 matrix A, we can find an interesting relationship between
the entries A and its eigenvalues. We’ll need an additional piece of terminology
to complete this formulation. The trace of a matrix A is the sum of the entries
along the main diagonal, that is, the sum of all entries in positions (i, i). So for
an arbitrary 2× 2 matrix

A =

[
a b

c d

]

the trace is τ = tr(A) = a+d. Recall that the determinant of A is ∆ = det(A) =
ad− bc.

(a) Show that the characteristic equation of A is λ− τλ+ ∆.

(b) Take a second to think about what this means: to understand the eigen-
values of a 2 × 2 matrix, we don’t need to look at all 4 of the entries; we just
need to consider two quantities, τ and ∆, that are related to the entries of the
matrix. In essence, this cuts the complexity of the problem in half! (There’s
nothing to answer here. Just take a second to appreciate this fact.)
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(c) Show that A has only real eigenvalues if and only if τ2 ≥ 4∆.

(d) Show that if A is the transition matrix of a dynamical system, then the
populations go to zero in the long term if τ < 0 and ∆ > 0.
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(4) Over the course of the next several parts, we’ll show that any symmetric
matrix has only real eigenvalues. This is known as the spectral theorem. This
will also give us a chance to practice manipulating complex numbers.

(a) Let v be a vector with complex entries. Show that v̄Tv has only real
entries.

(b) Now let (v, λ) be a (possibly complex) eigenpair of a symmetric matrix
A. Show that v̄TAv = λv̄Tv.
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(c) Let (v, λ) be the same eigenpair of the symmetric A as in the last part.
Show that v̄TAv = λ̄v̄Tv. (Hint: you’ll have to use the fact that A is symmetric
here.)

(d) Combine the last two parts to show that λ must be real. (Hint: consider
the two equivalent ways to write v̄TAv and combine this with fact that v̄Tv is
real.)
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A.11 Studio 4.1

(0) Let v1,v2, . . . ,vk be vectors in Rn. Show that span(v1,v2, . . . ,vk) is a
subspace of Rn.

(1) Let Pn be the collection of all polynomials of degree n and smaller.
Show that Pn is a vector space.

(2) Let Mm×n be the collection of all m× n matrices. Show that Mm×n is
a vector space. (Here, the matrices are the “vectors” of the vector space.)
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(3) Define

A =

[
1 2 4 0

0 1 3 −2

]
, B =

1 3 −4 −3 1

0 1 −3 1 0

0 0 0 0 0


(a) Find a collection of vectors that span ker(A).

(b) Find a collection of vectors that span ker(B).
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(4) Let H and K be two subspaces of a vector space of V . We define the
intersection of H and K, denoted H ∩K, to be the collection of all vectors from
V that are in both H and K.

(a) Show that H ∩K is a subspace of V .

(b) Let’s see a concrete example. Define

v1 =

5

3

8

 , v2 =

1

3

4

 , v3 =

 2

−1

5

 , v4 =

 0

−12

−28


Let H = span(v1,v2) and K = span(v3,v4). Then both H and K are planes
in 3-dimensional space, both pass through the origin, and their intersection is a
line. Write a short sentence explaining why the preceding statements are true.

(c) Now let’s get more quantitative. If the intersection of H and K is a line,
then it is the span of a single vector w. Find this vector. (Hint: if w is in H,
then w = c1v1 + c2v2, and if w is in K, then w = c3v3 + c4v4.
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(5) Let H and K be two subspaces of a vector space V . The union of H
and K, denoted H ∪ K, is collection of all vectors of V that are in H or K.
Show that H ∪ K is not necessarily a subspace of V by given an example in
which H and K are subspaces of R2.

(6) Let H and K be subspaces of a vector space V . The sum of H and K,
denoted H + K is the collection of vectors from V that can be written as the
sum of a vector in H and a vector in K.

(a) Show that H +K is a subspace of V .

(b) Show that H is a subspace of H +K and K is a subspace of H +K.



198 APPENDIX A. STUDIO PROBLEMS

(7) Let a1,a2, . . . ,a5 be the columns of matrix A, where

A =


5 1 2 2 0

3 3 2 −1 −12

8 4 4 −5 12

2 1 1 0 −2

 , B =
[
a1 a2 a4

]

(a) Are a3 and a5 in im(B)?

(b) Find a collection of vectors that spans ker(B).
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A.12 Studio 4.2

(0) Let u,v,w ∈ R2 and c be a scalar.
(a) Show that u ◦ v = v ◦ u.

(b) Show that (u + v) ◦w = u ◦w + v ◦w.

(c) Show that (cu) ◦ v = c(u ◦ v).
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(1) Define

u =


−3

7

4

0

 v =


1

−8

15

−7

 .
(a) Calculate ‖u‖.

(b) Calculate ‖v‖.
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(c) Calculate ‖u− v‖.

(d) Show that ‖u− v‖ = ‖v − u‖.

(e) Show that ‖u + v‖2 = ‖u‖2 + ‖v‖2 if u and v are orthogonal. (This is
equivalent to the Pythagorean theorem in higher dimensions.)
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(2) Let W be a subspace of Rn and let W⊥ be the orthogonal complement
of W . Show that the only vector in both W and W⊥ is the zero vector.

(3) Let W be a subspace of Rn and let W⊥ be the orthogonal complement
of W . Show that (W⊥)⊥ = W .



A.12. STUDIO 4.2 203

(4) Define A as found in studio12.mat. Find a collection of vectors that
spans im(A)⊥.
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A.13 Studio 4.3

(0) Define

u =


1

2

3

4

 , v =


2

6

7

−1

 , w =


−3

2

−4

−5

 , y =


1

1

1

1

 .
(a) Find the projection of y onto U = span(u) using both the explicit

calculation at the beginning of the section, and the more general method used
to complete the regression examples. Confirm that these approaches yield the
same result.

(b) Find the projection of y onto V = span(u,v). Is the coefficient of u in
this projection the same as the coefficient of u in the previous part?
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(c) Find the projection of y onto W = span(u,v,w).

(d) Find a matrix A such that im(A) = W . Confirm that y− ŷ is a member
of W⊥ = kerAT .
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(1) Suppose we have (x, y) data points (-2,1), (-1,4), (0,3), (1,7), (2,4).

(a) Find the linear model that minimizes the sum of squared errors. Calcu-
lated the sum of squared errors by finding the norm ‖y − ŷ‖.

(b) Find the quadratic model that minimizes the sum of squared errors.
Calculated the sum of squared errors. Is it larger or smaller than the SSE in
the previous part?

(c) Find the cubic model that minimizes the sum of squared errors. Cal-
culated the sum of squared errors. Is it larger or smaller than the SSE in the
previous part?

(d) Find the quartic model that minimizes the sum of squared errors. Cal-
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culated the sum of squared errors. What does your SSE mean in this case?

(2) Sometimes a single independent variable isn’t enough to create a de-
pendable model of a given system. For an example, imagine that you run a
small ice cream shop on the coast of Maine. There are two main drivers for
your sales: daily temperature and median customer income. Suppose we have a
model with two independent variables u, representing the average daily temper-
ature in July in your town, and v, representing the median income of customers
who purchased from you in July. You’ve been collecting data over several years.
The results can be seen in Table B.1

Year Total Sales Average Temp. Median Income

2009 27.93 86.92 30.11

2010 28.29 88.51 31.48

2011 29.70 88.01 32.03

2012 31.09 87.05 33.34

2013 33.11 89.15 34.45

Table A.1: Data collected for the total sales (thousands of dollars), average
temperate (degrees Fahrenheit), and median household income (thousands of
dollars) for July of the indicated year

(a) Find the best multlinear model s(u, v) = β0 + β1u + β2v for the given
data?
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(b) We could also allow for the variables u and v to interact multiplicatively
through the model s(u, v) = β0 +β1u+β2v+β3uv. Find the best model of this
form for the given data.

(c) An even more general model might be s(u, v) = β0 +β1u+β2v+β3uv+
β4u

2 + β5v
2. Find the best model of this form for the given data.
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(3) One of the tools used in data mining is logistic regression, which takes a
collection of observations about certain probabilities and attempts to construct
the underlying cumulative density function. The logistic function in this case is

π(x) =
eβ0+β1x

eβ0+β1x + 1
,

where β0 and β1 are the parameters to be estimated. Notice that π(x) is between
0 and 1 for every x. Moreover, we see that π(x) → 1 as x → ∞ and π(x) → 0
as x→ −∞. So π(x) seems like a pretty good candidate for a CDF. Then π(x)
is the probability that some random variable X has value less than or equal to
x.

(a) For an example, let’s turn our attention to the grade distribution in a
typical core foundation class. The median grade should be a B-, which equations
to a 2.6 grade points. In my classes, roughly 15% of students receive an A- or
better, which equates to 3.6 grade points or higher. Roughly 5% of students
fail the course, which equates to 1 grade point or lower. Find the best logistic
model for the underlying cumulative distribution function.
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(b) According to your model, what percentage of students earn a C or
better?

(c) According to your model, how many grade points should a student earn
to be in the top 25% of the class?



A.14. STUDIO 5.1 211

A.14 Studio 5.1

(0) Is the collection {[
1

1

]
,

[
1

2

]
,

[
2

3

]}

a basis for R2?

(a) Is the collection 


1

1

1

1

 ,


1

2

3

4

 ,


0

0

1

0

 ,


1

0

0

1




a basis for R4?
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(1) Define A and B by

A =

1 6 16 −40

2 5 11 −31

3 4 6 −22

 , B =

1 1 1 1 0

0 1 1 0 0

0 0 1 −1 −2

 .
(a) Find a basis for the kernel of A.

(b) Find a basis for the image of A.

(c) What are the dimensions of the kernel and image of A?
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(d) Find a basis for the kernel of B.

(e) Find a basis for the image of B.

(f) What are the dimensions of the kernel and image of B?
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(2) Let B = {v1,v2, . . . ,vk} be a set of vectors in Rn.
(a) Argue that if k > n, then B cannot be a basis for Rn.

(b) Argue that if k < n, then B cannot be a basis for Rn.

(c) Conclude that any basis of Rn must have exactly n elements. (There’s
nothing to do here other than recognize that the previous two parts directly
show this fact.)
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(3) The standard basis of Rn is the collection {e1, e2, . . . , en}, where ei has
a 1 in component i and zero in all other components. We can represent a vector
x as a natural linear combination of these basis elements. For instance, if x is
in R2, we have

x =

[
x1

x2

]

= x1

[
1

0

]
+ x2

[
0

1

]
= x1e1 + x2e2.

We can extend the idea of the standard basis to other vector spaces.
(a) Let H be the vector space of 2× 2 matrices. Come up with a best guess

as to the standard basis of H. Show that the collection of elements that you
propose is in fact a basis.

(b) Let Pn be the vector space of polynomials of degree at most n. Come
up with a best guess as to the standard basis of Pn. Show that the collection
of elements that you propose is in fact a basis.
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(4) Recall that a n × n matrix A is symmetric if A(i, j) = A(j, i) for all
1 ≤ i, j ≤ n.

(a) Find a basis for the vector space of 2× 2 symmetric matrices.

(b) Find a basis for the vector space of 3× 3 symmetric matrices.

(c) How would your previous answers generalize to the vector space of n×n
matrices?
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A.15 Studio 5.2

(0) Define

B =




1

1

1

1

 ,


1

2

3

4

 ,


0

0

1

0

 ,


1

0

0

1


 , C =




1

0

0

0

 ,


1

1

0

0

 ,


1

1

1

0

 ,


1

1

1

1


 .

(a) Verify that B and C are bases for R4.

(b) What are the B-coordinates of x = [5, 6, 7, 8]T ?

(c) Construct a matrix that changes coordinates from the standard basis E
of R4 to the basis B.
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(d) What are the C-coordinates of x = [5, 6, 7, 8]T ?

(e) Construct a matrix that changes coordinates from the standard basis E
of R4 to the basis C.

(f) Construct a matrix that changes coordinates from the basis B to basis
C.

(g) Verify that the matrix you constructed in the previous subproblem
coverts the B-coordinates of x = [5, 6, 7, 8]T to the C-coordinates of x = [5, 6, 7, 8]T .
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(h) Construct a matrix that changes coordinates from the basis C to basis
B.

(i) Verify that the matrix you constructed in the previous subproblem coverts
the B-coordinates of x = [5, 6, 7, 8]T to the C-coordinates of x = [5, 6, 7, 8]T .
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(1) We’ll show that the mapping of x to its coordinates in a given basis B
is a linear transformation. Any linear transformation f satisfies two properties:
f(x+ y) = f(x) + f(y) and f(cx) = cf(x) for any scalar c.

(a) Let u and v be two vectors in a vector space V with basis B. Show that
[u + v]B = [u]B + [v]B.

(b) Let u a vector in a vector space V with basis B. Show that [cu]B = c[u]B.
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(2) Define

B =


1

1

1

 ,
1

2

3

 ,
0

0

1


 , C =


1

0

0

 ,
1

1

0

 ,
1

1

1


 .

Label the vectors of B in order as b1, b2 and b3, respectively. Similarly, label
the vectors of C in order as c1, c2 and c3, respectively. We can think about the
change of coordinates matrix PB→C in a different way than the on presented in
the text. In this problem, we’ll walk through that process. Define x = [4, 5, 6]T .

(a) Write x as a linear combination of the vectors b1, b2 and b3.

(b) Write each vector in B as a linear combination of the vectors c1, c2, and
c3.
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(c) Substitute your expressions for b1, b2 and b3 in terms of c1, c2, and c3
into your expression for x in terms of b1, b2 and b3. (You should now have an
expression for x in terms of c1, c2, and c3.) Regroup like terms and confirm
that the C-coordinates of x are the same here as you calculated above.

(d) Take a second to note that we’ve changed from B-coordinates to C-
coordinates by writing each vector of B in terms of a linear combination of the
vectors in C. (There’s nothing to do here but make this realization.)

(e) Confirm that numerically

PB→C =
[

[b1]C [b2]C [b3]C

]
.

(f) Argue why the identity in the preceding part must hold, and generalize
this idea.
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A.16 Studio 5.3

(0) Define matrices A,B,C and E as found in studio16.mat. Determine
whether each matrix is diagonalizable, orthogonally diagonalizable or neither.
If diagonalizable, confirm that the eigenvectors are linearly independent. If
orthogonally diagonalizable, confirm that the eigenvectors are orthogonal.
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(1) We say two matrices A and B are similar if there exists a matrix P
such that A = PBP−1.

(a) Show that matrixA from studio16.mat is similar to D = diag([6,5,4]).
(Here D is the diagonal matrix with entries 6, 5, 4 in order along its main di-
agonal.)

(b) Show that matrix F from studio16.mat is similar to D = diag([6,5,4]).

(c) Show that matrices A and F are similar.
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(2) Let A be a symmetric n× n matrix.
(a) Show that A2 is symmetric.

(b) A symmetric matrix A such that A2 = A is known as a projection matrix.
Let y ∈ Rn, and define ŷ = Ay. Show that y − ŷ is orthogonal to ŷ.

(c) Explain why the previous part shows that any vector in Rn is a lin-
ear combination of a vector in the image of A and a vector in the orthogonal
complement of the image of A?
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(3) Show that if A is diagonalizable and invertible, then A−1 is, too.

(4) Construct a 2× 2 matrix that is invertible but not diagonalizable.

(5) Construct a 2× 2 matrix that is diagonalizable but not invertible.
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(6) Show that if A is invertible and orthogonally diagonalizable, then A−1

is, too.
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A.17 Studio 5.4

(0) (a) Given a matrixX, explain by the Matlab command B = X - ones(N,1)*mean(X)

returns a matrix B whose columns each have mean zero.

(b) Suppose that (v1, λ1) and (v2, λ2) are two distinct eigenpairs of a matrix
ATA. Show that Av1 and Av2 are orthogonal.
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(1) Check out the data in pca_salary.csv. The Matlab variable textdata
contains the column headers describing the columns of the matrix data which
contains observations relating CEO age to CEO pay.

(a) Use PCA to determine the first principal component and second principal
components and their associated eigenvalues.

(b) Write an interpretation of the first and second principal components.

(c) How many principal components must you include in order to capture
90% of the total variance?
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(2) Check out the data in pca_temp.csv. The Matlab variable textdata

contains the column headers describing the columns of the matrix data which
contains observations relating latitude, longitude and average January temper-
ature over a 30 year time period.

(a) Use Google to locate the mean longitude and latitude of this data set
on a map. Longitude becomes more negative as you move west in this data set,
and latitude becomes more positive as you move north in this data set.

(b) Use PCA to determine the first principal component and second princi-
pal components and their associated eigenvalues.

(c) Write an interpretation of the first and second principal components.

(d) How many principal components must you include in order to capture
90% of the total variance?
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(3) Check out the data in pca_colleges.csv. The Matlab variable textdata
contains the column headers describing the columns of the matrix data which
contains observations a number of attributes of colleges, including acceptance
rate, average SAT score, and cost per year.

(a) Use PCA to determine the first principal component and second principal
components and their associated eigenvalues.

(b) Write an interpretation of the first principal component.

(c) How many principal components must you include in order to capture
90% of the total variance?
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B.1 Studio 1.1 solutions

(0) Write the augmented matrix, the row reduced echelon form matrix, and
the general solutions of the linear systems below.

(a)

3x1 + 6x2 = −3

5x1 + 7x2 = 10

The augmented matrix is given by

EDU>> [3 6 -3; 5 7 10]

ans =

3 6 -3

5 7 10

The RREF of the augmented matrix is given by

EDU>> rref([3 6 -3; 5 7 10])

ans =

1 0 9

0 1 -5

Hence, x1 = 9 and x2 = −5 is the unique solution to this linear system.
(b)

x1 − 5x2 + 4x3 = −3

2x1 − 7x2 + 3x3 = −2

−2x1 + x2 + 7x3 = −1

The augmented matrix is given by

EDU>> [1 -5 4 -3; 2 -7 3 -2; -2 1 7 -1]

ans =

1 -5 4 -3

2 -7 3 -2

-2 1 7 -1

The RREF of the augmented matrix is given by

EDU>> rref([1 -5 4 -3; 2 -7 3 -2; -2 1 7 -1])
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ans =

1.0000 0 -4.3333 0

0 1.0000 -1.6667 0

0 0 0 1.0000

Because the right-most column is a pivot column, the system has no solution.
Notice that there is a free variable and yet the system is not consistent.

(c) Do the three lines 2x1 +3x2 = −1, 6x1 +5x2 = 0 and 2x1−5x2 = 7 have
a common point of intersection? If so, what is it? If not, how are you sure?

These three lines define a system of linear equations who augmented matrix
is

EDU>> [2 3 -1; 6 5 0; 2 -5 7]

ans =

2 3 -1

6 5 0

2 -5 7

An intersection of these three lines is a pair (x1, x2) which satisfies all three
equations simultaneously, and this is exactly the same as a solution to the linear
system whose augmented matrix we just described. We can therefore compute
the RREF of the augmented matrix to determine whether solutions exist.

EDU>> rref([2 3 -1; 6 5 0; 2 -5 7])

ans =

1 0 0

0 1 0

0 0 1

Since the right-most column is a pivot column, the linear system has no solu-
tions. Therefore the three lines do not intersect.
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(1) You have 32 coins in denominations of pennies (1 cent each), nickels (5
cents each), and dimes (10 cents each) worth $1.00 (100 cents) in total.

(a) Write a systems of a linear equations that describes this system.

Let p,n, and d be the number of pennies, nickels and dimes, respectively.
Our system of linear equations is given by

p+ n+ d = 32

p+ 5n+ 10d = 100

(b) Solve the system of linear equations you found in the previous part of
this question.

The RREF of the augmented matrix of this system is

EDU>> rref([1 1 1 32; 1 5 10 100])

ans =

1.0000 0 -1.2500 15.0000

0 1.0000 2.2500 17.0000

So d is a free variable in the linear algebraic sense.

(c) How many coins of each type do you have?

Since d represents a physical quantity, we must take into consideration what
values d can actually assume. For instance, d ≥ 0, because we can’t have a
negative number of dimes. Looking at the first row in the RREF we have
p = 15 + 1.25d. If d = 1, then we must have p = 16.25 pennies. But this
can’t be the case. You can convince yourself that d must be a multiple of 4.
Looking at the second row in the RREF, we have n = 17−2.25d. If d ≥ 8, then
n < 0, which is impossible, too. By using our knowledge about the context of
the mathematical model we’ve made, we’ve determined that the free variable d
can only assume two values, d = 0 and d = 4, in order for our solution to make
sense.
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(2) Find the interpolating polynomial p(t) = a0 + a1t + a2t
2 for the data

(1,6), (2,15), (3,28). That is, find a0, a1 and a2 such that

a0 + a1(1) + a2(1)2 = 6

a0 + a1(2) + a2(2)2 = 15

a0 + a1(3) + a2(3)2 = 28

First, notice that we want to solve for a0, a1, a2. The augmented matrix of
this linear system is

EDU>> [1 1 1 6; 1 2 4 15; 1 3 9 28]

ans =

1 1 1 6

1 2 4 15

1 3 9 28

The RREF of the augmented matrix is

EDU>> rref([1 1 1 6; 1 2 4 15; 1 3 9 28])

ans =

1 0 0 1

0 1 0 3

0 0 1 2

So the solution to the linear system is a0 = 1, a1 = 3 and a2 = 2. So there is a
unique interpolating polynomial p(t) = 1 + 3t+ 2t2 that passes through points
(1,6), (2,15), (3,28).
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(3) (a) A system of linear equations with fewer equations than unknowns is
sometimes called underdetermined. Can such a system have a unique solution?

The number of pivots in a matrix is at most the number of columns and at
most the number of rows. If the there are fewer equations than unknowns, then
there are fewer rows than columns. Hence, there are fewer pivots than there
are columns. Then at least one column must represent a free variable. If the
right-most column is a pivot column, then the linear system has no solution.
Otherwise, the linear system has infinitely many solutions. So no, such a system
cannot have a unique solution.

Example of infinitely many solutions: The augmented matrix

EDU>> [1 1 1 1; 2 3 4 5]

ans =

1 1 1 1

2 3 4 5

represents a linear system of 2 equations in 3 unknowns. The RREF is

EDU>> rref([1 1 1 1; 2 3 4 5])

ans =

1 0 -1 -2

0 1 2 3

Notice the free variable and that the right-most column is not a pivot column.
Example of no solutions: The augmented matrix

EDU>> [1 2 3 1; 2 4 6 5]

ans =

1 2 3 1

2 4 6 5

represents a linear system of 2 equations in 3 unknowns. The RREF is

EDU>> rref([1 2 3 1; 2 4 6 5])

ans =

1 2 3 0

0 0 0 1

Notice the free variables, and also that the right-most column is a pivot column.
There is no solution despite the presence of the free variables.
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(b) A system of linear equations with more equations than unknowns is
sometimes called overdetermined. Can such a system be consistent?

The number of pivots in a matrix is at most the number of columns and at
most the number of rows. If the there are fewer unknowns than equations, then
there are fewer columns than rows. Hence, there are fewer pivots than there
are rows. If the right-most column is a pivot column, then there is no solution.
But if the right-most column is not a pivot column, then is there is a unique
solution. So, depending on the contents of the right side of the linear system,
it may be possible for it to be consistent.

Example of no solution: x1 + 2x2 = 3, 2x1 + 4x2 = 10, 5x1 + 10x2 = 30:

EDU>> rref([1 1 3; 2 4 10; 5 10 30])

ans =

1 0 0

0 1 0

0 0 1

Example of a unique solution: x1+2x2 = 3, 2x1+4x2 = 10, 5x1+10x2 = 25:

EDU>> rref([1 1 3; 2 4 10; 5 10 25])

ans =

1 0 1

0 1 2

0 0 0

(c) Suppose the coefficient matrix of a system of linear equations has a pivot
in each row. Is the system consistent? Explain your answer.

Yes, the system is consistent. The only way the system could be inconsistent
is if the right-most column of the augmented matrix were a pivot column. This
would imply that there is a row of all zeros in the RREF of the coefficient
matrix. Since this is not the case, we can’t possibly arrive at the condition 0 =
1 in the RREF of the augmented matrix. Hence, for any choice of the right-hand
side of the equation, we are guaranteed a solution.

(d) Suppose the coefficient matrix of a system of linear equations has a pivot
in each column. Is the system consistent? Explain your answer.

The system may or may not be consistent. Imagine a situation in which
there are many equations, but only a few unknowns. Then by our work in part
(b), it may be the case that there is an inconsistency, even if there is a pivot in
every column of the coefficient matrix.
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(4) (a) Generate a random coefficient matrix with 3 row and 3 columns
using the rand(3,3) command in Matlab. Does the matrix you generated
correspond to linear system with a unique solution? How do you know?

We run verb+rref(rand(3,3))+ and observe the results. The answer is that
yes, each of them should correspond to a system with a unique solution. There
should be a pivot in every row of the RREF of the coefficient matrix, and so
the system must be consistent. There should also be a pivot in every column
of the RREF of the coefficient matrix, and so the system has no free variables.
These together imply that there is a unique solution.

(b) Repeat the procedure above 10 times. Do you notice a trend? Make a
hypothesis about whether a random linear system of 3 equations in 3 unknowns
has a unique solution.

All 10 trials should return exactly the same results. This seems to imply
that most systems of 3 equations in 3 unknowns have a unique solution.

(c) Is it possible that a linear system with 3 equations in 3 unknowns has no
solutions? Stated another way, can a system of 3 linear equations in 3 variables
be inconsistent? Does this fit with your hypothesis from above?

Definitely. For an example, try x1 + 2x2 + 3x3 = 1, x1 + 2x2 + 3x3 = 2,
x1 + 2x2 + 3x3 = 3. The RREF of the augmented matrix is

EDU>> rref([1 2 3 1; 1 2 3 2; 1 2 3 3])

ans =

1 2 3 0

0 0 0 1

0 0 0 0

We certainly can’t say “all” of these systems have a unique solution, but we
might be able to revise it to say “most” of them do.
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B.2 Studio 1.2 solutions

(0) (a) Does the vector b =

1

2

3

 lie in the span of the vectors v1 =

2

2

2

,

v2 =

1

2

3

, v3 =

2

1

3

?

If b lies in the span of v1,v2, v3, then there exists weights x1, x2, x3 such
that x1v1 + x2v2 + x3v3 = b. In another formulation, b lies in the span of
these vectors if and only if the matrix equation Ax = b, where v1,v2,v3 are
the columns of A, has a solution. We can determine whether such a solution
exists by using Matlab:

>> rref([2 1 2 1; 2 2 1 2; 2 3 3 3])

ans =

1 0 0 0

0 1 0 1

0 0 1 0

The RREF indicates that the linear system is consistent, and in particular that
there is a unique solution, so b lies in the span of v1,v2,v3.

(b) Determine whether there is a solution to the matrix equation72.0 56.0 8.0

74.0 69.0 74.0

95.0 13.0 11.0

x =

 3.27

33.67

90.16

 .

Denote the matrix equation above as Ax = b. Note that the linear system
represented by the matrix equation has the augmented matrix [A|b]. After
making this observation, the rest is a straightforward Matlab exercise:

>> rref([72.0 56.0 8.0 3.27; 74.0 69.0 74.0 33.67; 95.0 13.0 11.0 90.16])

ans =

1.0000 0 0 1.0596

0 1.0000 0 -1.4047

0 0 1.0000 0.7052

So the system is consistent, and in particular has a unique solution.
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(c) Determine whether the linear system

46.0x1 + 11.0x2 + 56.0x3 = 47.22

36.0x1 + 100.0x2 + 30.0x3 = 98.42

is consistent.

This is similar to the previous part and is essentially an exercise of trans-
ferring between different forms of representation. We take the RREF of the
augmented matrix:

>> rref([46.0 11.0 56.0 47.22; 36.0 100.0 30.0 98.42])

ans =

1.0000 0 1.2536 0.8657

0 1.0000 -0.1513 0.6725

Hence the system is consistent, because the right-most column is not a pivot
column. Alternatively, we could’ve used our knowledge of underdetermined
systems to immediately note that there must be infinitely many solutions to
this linear system.
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(1) Let A be a m × n matrix. Prove that if Ax = b, then x ∈ Rn and
b ∈ Rm.

Remember that Ax = b represents a system of linear equations. Each
component of x represents a variable, and each component of b represents the
righthand side of an equation. Also recall that coefficient matrix A has one
column for each variable and one row for each equation. Hence, the number of
columns in A must be equal to the number of components in x, and the number
of rows in A must be equal to the number of components in b.

(2) Let A be an m× n matrix. Prove that if the matrix equation Ax = b
has a solution x ∈ Rn for every choice of b ∈ Rm, then A must have a pivot
position in every row.

Imagine that rref(A) does not have a pivot in every row, so that rref(A)
has a row of zeros. We could choose some d such that [rrefA|d] has a 1 in
the rightmost column in the row in which rref(A) is all zeros. Since all the
operations necessary to produce the row reduced echelon form are reversible
(namely taking linear combinations of rows), we can transform [rref(A)|d] back
into an augmented matrix [A|b] which represents an inconsistent system.

(Note: this problem is too hard. Sorry! The other direction is easier: if
every row of A has a pivot, then Ax = b is consistent for every b. Give it a
shot.)

(3) Let A be a m × n matrix, and u and v be vectors in Rn. Prove that
A(u + v) = Au +Av.

Let

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 , u =


u1

u2
...

un

 , v =


v1

v2
...

vn


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Then

A(u + v) = A


u1 + v1

u2 + v2
...

un + vn

 =


a11(u1 + v1) + a12(u2 + v2) + · · ·+ a1n(un + vn)

a21(u1 + v1) + a22(u2 + v2) + · · ·+ a2n(un + vn)
...

am1(u1 + v1) + am2(u2 + v2) + · · ·+ amn(un + vn)



=


a11u1 + a12u2 + · · ·+ a1nun

a21u1 + a22u2 + · · ·+ a2nun
...

am1u1 + am2u2 + · · ·+ amnun

+


a11v1 + a12v2 + · · · a1nvn
a21v1 + a22v2 + · · · a2nvn

...

am1v1 + am2v2 + · · · amnvn


= Au +Av.
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(4)

B =


1 4 1 2

0 1 3 −4

0 2 6 7

2 9 5 −7

 , C =


1 4 1 2

0 1 3 −4

0 2 6 7

2 9 6 −7

 ,

D =

1 4 1 2

0 1 3 −4

0 2 6 7

 , E =


1 4 1

0 1 3

0 2 6

2 9 6


(a) Can every vector in R4 be written as a linear combination of the columns

of B?

The columns of B span R4 if and only if every b ∈ R4 has a solution x such
that Bx = b. We proved that in earlier that if B has a pivot in every row, then
every such b has a solution. So we simply have to test B in Matlab:

>> rref([1 4 1 2; 0 1 3 -4; 0 2 6 7; 2 9 5 7])

ans =

1 0 -11 0

0 1 3 0

0 0 0 1

0 0 0 0

So the columns of B do not span R4. For instance,
1

4

1

3


is not in the span of the columns because

>> rref([1 4 1 2 1; 0 1 3 -4 4 ; 0 2 6 7 1; 2 9 5 7 3])

ans =

1 0 -11 0 0

0 1 3 0 0

0 0 0 1 0

0 0 0 0 1
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And so the system with the given b is consistent.

(b) Do the columns of C span R4?

The reasoning is the same as the previous part; we need only test C in
Matlab:

>> rref([1 4 1 2; 0 1 3 -4; 0 2 6 7; 2 9 6 -7])

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

So since C has a pivot in every row, there is a solution to Cx = b for any chosen
b.

(c) Does the matrix equation Dx = b have a solution for every b ∈ R3?

This is equivalent to asking whether the columns of D span R3. We can test
this in Matlab:

>> rref([1 4 1 2; 0 1 3 -4; 0 2 6 7])

ans =

1 0 -11 0

0 1 3 0

0 0 0 1

So, yes, there is a solution to Dx = b for any chosen b ∈ R3.

(d) Do the columns of E span R4?

As we have done with the previous parts, we can test this question with
Matlab:

>> rref([1 4 1; 0 1 3; 0 2 6; 2 9 6])

ans =

1 0 0

0 1 0

0 0 1

0 0 0
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So, no, there is not always a solution to Ex = b. For instance, take

b =


1

1

1

1


which results in

>> rref([1 4 1 1; 0 1 3 1; 0 2 6 1; 2 9 6 1])

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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(5) Define

A =


10 −7 1 4 6

−8 4 −6 −10 −3

−7 11 −5 −1 −8

3 −1 10 12 12

 .
(a) Do the columns of A span R4?

This is equivalent to asking whether Ax = b has a solution x for every
b ∈ R4. From an earlier problem we know this is the case if and only if every
row of A has a pivot position. We can test this in Matlab:

>> rref([10 -7 1 4 6; -8 4 -6 -10 -3; -7 11 -5 -1 -8; 3 -1 10 12 12])

ans =

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

So, yes, the columns of A do span R4.

(b) Find a column of A that can be deleted and yet have the remaining
matrix columns still span R4.

From the previous part, it appears that if we delete column 4, then we will
still have a pivot in every row. We can verify this is true:

>> rref([10 -7 1 6; -8 4 -6 -3; -7 11 -5 -8; 3 -1 10 12])

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(c) Can you delete more than one column and yet have the remaining matrix
columns still span R4?

If we were to delete another column, we have a matrix with 4 rows and 3
columns. Since we can have at most one pivot per row, we would have at least 1
row without a pivot. Then by our prior results, the columns of the new matrix
would not span R4.
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B.3 Studio 1.3 solutions

(0) Suppose weve been tracking 5 industries over the last several years, and
constructed the following matrix describing how individual industries buy the
output of other industries.

C =


0.1 0.6 0.2 0 0.3

0.1 0.2 0 0.7 0.1

0.3 0 0.1 0.1 0.2

0.4 0.1 0.4 0.2 0.3

0.1 0.1 0.3 0 0.1


As weve seen before with these type of matrices, the matrix entry (i, j) is the
percent of the output of industry j which is bought by industry i.

(a) Explain in words why the sums of each column must be equal to 1.

Each column represents the sales of a particular industry. Since we’ve as-
sumed that each industry either sells or retains 100% of its total output, the
column sums must be 1.

(b) Explain in words by the row sums need not be equal to 1.

Each row represents the purchases of a particular industry. Since we haven’t
placed any constraints on how much a particular industry buys from its fellow
industries, we can only assume that some industries will buy more, and some
industries will buy less. Therefore, the row sums need not be equal to 1.
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(c) Suppose the industry i has a total output pi, measured in dollars. How
much should each industry produce in order for all industries to have their costs
exactly balance their revenue?

Remember that the total cost is given by c = Cp and the total revenue is
given by r = Ip, where I here is the 5 × 5 identity matrix. At the break even
point, revenue exactly equals cost. In symbols, Cp = Ip. Solving for p here is
equivalent to solving for p in the homogeneous equation (C − I)p = 0.

>> C

C =

0.1000 0.6000 0.2000 0 0.3000

0.1000 0.2000 0 0.7000 0.1000

0.3000 0 0.1000 0.1000 0.2000

0.4000 0.1000 0.4000 0.2000 0.3000

0.1000 0.1000 0.3000 0 0.1000

>> rref(C-eye(5))

ans =

1.0000 0 0 0 -2.4041

0 1.0000 0 0 -2.6700

0 0 1.0000 0 -1.3086

0 0 0 1.0000 -2.5651

0 0 0 0 0

The function eye in Matlab generates identity matrices. Type help eye to see
how it works. We see that the last production level, call it p5, is a free variable,
so there is not a unique solution to the problem. (Notice that I’ve only taken
the RREF of the coefficient matrix, not the augmented matrix. Why is this
OK?) Once, we’ve chosen p5, the other production levels are set. For instance,
p1 = 2.4041p5. In words, the production of industry 1 is 240% that of industry
5.
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(1) You and a friend have opened a boutique cupcake shop, and together
you’re trying to get a handle on your business total cost as a function of the
total number of cupcakes produced. You currently have three data points: you
know that the fixed cost of your business hovers around $700 per week; in the
first week you produced 100 cupcakes and your total cost was $775; in the sec-
ond week you produced 200 cupcakes and your total cost was $800.

(a) Your cofounder obviously didn’t have a Babson education: he thought
that he had found a line that perfectly fit all three data points. Use linear
algebraic reasoning to convince him that this can’t be the case.

Imagine the linear model is of the form C(x) = c1x + c0. We would like
to determine the values of c0 and c1 that fit our data, if any such coefficients
exist. We can substitute data points (0,700), (100,775) and (200,800) into the
proposed linear model to produce a system of linear equations.

700 = c1(0) + c0

775 = c1(100) + c0

800 = c1(200) + c0

This corresponds to the matrix equation1 0

1 100

1 200

[c0
c1

]
=

700

775

800


Notice that this linear system is overdetermined, as covered in Studio 1. We
take the RREF of the augmented matrix in Matlab to learn about the solutions.

>> rref([1 0 700; 1 100 775; 1 200 800])

ans =

1 0 0

0 1 0

0 0 1

We conclude that the linear system is inconsistent. Therefore, there exists no
line y = c1x+ c0 that passes through all three data points.

(b) After giving it another try, your cofounder claims that he has found
several quadratic models C(x) = c0 + c1x + c2x

2 which perfectly match the
data. Either prove your cofounder right by producing an infinite family of mod-
els that perfectly predict the data, or disprove his claim by showing that there
is a unique solution or no solution to this problem. (Not that simply produc-
ing a solution is not enough! How do you know there aren’t more, for instance?)
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This is similar to the last problem, except now we have three coefficients to
search for. We’ll jump straight to the matrix equation:1 0 0

1 100 1002

1 200 2002


c0c1
c2

 =

700

775

800


Again, we take the RREF of the augmented matrix in Matlab to learn about
the solutions.

>> rref([1 0 0 700; 1 100 100^2 775; 1 200 200^2 800])

ans =

1.0000 0 0 700.0000

0 1.0000 0 1.0000

0 0 1.0000 -0.0025

So there is a unique parabola C(x) = −0.0025x2 + x+ 700 that passes through
all three of these data points. Notice that the fixed cost in both the data and
the model is 700, which should make you feel a little more confident about the
solution.

(c) Motivated by your success with the quadratic modeling exercise, you’ve
recently been wondering if there’s a cubic total cost model C(x) = c0 + c1x +
c2x

2 + c3x
3 that will even perfectly predict the data. Use linear algebraic rea-

soning to show how many of these solutions must exist.

We’ll play the same game that we’ve been playing the previous parts. Here
the matrix equation is

1 0 0 0

1 100 1002 1003

1 200 2002 2002



c0

c1

c2

c3

 =

700

775

800


Notice that this linear system is underdetermined, as covered in Studio 1. We
take the RREF of the augmented matrix in Matlab to learn about the solutions.

>> rref([1 0 0 0 700; 1 100 100^2 100^3 775; 1 200 200^2 200^3 800])

ans =

1 0 0 0 700

0 1 0 -20000 1

0 0 1 300 0
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Notice that the coefficient c3 is a free variable, so there are infinitely many
solutions to the system. In context of the problem, there are infinitely many
cubic functions C(x) = c0 + c1x+ c2x

2 + c3x
3 that pass through all three data

points.
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(2) An economy has four sectors: agriculture, manufacturing, services and
transportation. Agriculture sells 20% of its output to manufacturing, 30% to
services, 30% to transportation and retains the rest. Manufacturing sells 35% of
its output to agriculture, 35% to services, 20% to transportation and retains the
rest. Services sells 10% of its output to agriculture, 20% to manufacturing, 20%
to transportation and retains the rest. Transportation sells 20% of its output
to agriculture, 30% to manufacturing, 30% to services and retains the rest.

(a) Construct the exchange matrix for this economy.

The columns represent what industries sell, and the rows represent what
industries buy. With the columns in order as the industries were given in the
problem statement, the exchange matrix is

C =


0.20 0.35 0.10 0.20

0.20 0.10 0.20 0.30

0.30 0.35 0.50 0.30

0.30 0.20 0.20 0.20

 .

(b) Find a set of equilibrium prices for the economy if the value of trans-
portation is $10.00 per unit.

At the break even point we have Cp = Ip, where I here is the 4×4 identity
matrix. Solving this system for p is the same as solving the homogeneous system
(C− I)p. We take the RREF of the coefficient matrix in Matlab to learn about
the solutions.

>> C = [0.2 0.35 0.1 0.2; 0.2 0.1 0.2 0.3; 0.3 0.35 0.5 0.3; 0.3 0.2 0.2 0.2]

C =

0.2000 0.3500 0.1000 0.2000

0.2000 0.1000 0.2000 0.3000

0.3000 0.3500 0.5000 0.3000

0.3000 0.2000 0.2000 0.2000

>> rref(C - eye(4))

ans =

1.0000 0 0 -0.8738

0 1.0000 0 -0.9206

0 0 1.0000 -1.7687

0 0 0 0

(Notice that we too the RREF of the coefficient matrix here instead of the
augmented matrix. Why is that OK?) Then pt, the total production of the
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transportation sector, is a free variable, and so there are infinitely many solutions
to this problem. If we set pt = 10 as the problem states, then pa = 8.73,
pm = 9.20, ps = 17.69 and pt = 10. In class we’ve thought of the p’s as total
production value, but you can also think of each of them as a price per one unit
of output of each sector. You just have to be careful to specify that we’re using
the same measure of units of output for each industry.

(c) The services sector launches a successful “eat farm fresh” campaign, and
increases its share of the output from the agricultural sector to 40%, where
as the share of agricultural production going to manufacturing falls to 10%.
Construct the exchange matrix for this new economy.

The exchange matrix becomes

C =


0.20 0.35 0.10 0.20

0.10 0.10 0.20 0.30

0.40 0.35 0.50 0.30

0.30 0.20 0.20 0.20

 .
Entries that changed are in bold.

(d) Find a set of equilibrium prices for this new economy if the value of
transportation if still $10.00 per unit. What effect has the service sectors cam-
paign had on the equilibrium prices for the sectors of this economy?

The new equilibrium prices are given through the same process as the earlier
solution:

>> C = [0.2 0.35 0.1 0.2; 0.1 0.1 0.2 0.3; 0.4 0.35 0.5 0.3; 0.3 0.2 0.2 0.2]

C =

0.2000 0.3500 0.1000 0.2000

0.1000 0.1000 0.2000 0.3000

0.4000 0.3500 0.5000 0.3000

0.3000 0.2000 0.2000 0.2000

>> rref(C - eye(4))

ans =

1.0000 0 0 -0.8539

0 1.0000 0 -0.8447

0 0 1.0000 -1.8744

0 0 0 0
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If we set pt = 10 as the problem states, then pa = 8.54, pm = 8.45, ps = 18.74
and pt = 10. We can write the impact of campaign on the prices as ∆pa =
8.54−8.73 = −0.19, ∆pm = 8.45−9.20 = −0.75, ∆ps = 18.74−17.69 = 1.05. So
the campaign increased the price per unit of the services industry, and decreased
the price per unit of the agriculture and manufacturing industries.
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B.4 Studio 1.4 solutions

(0) Show that the columns of a matrix A are linearly dependent if A has more
columns than rows.

A matrix can have at most one pivot per row. Since there are more rows than
columns, there is at least one column of A that does not have a pivot. If there
is a free variable in A, then the homogeneous equation Ax = 0 has a nontrivial
solution. So there is a nontrivial linear combination of the columns of A that
produces the zero vector. This is exactly the definition of linear dependence.
Hence, the columns of A are linearly dependent if A has more columns than
rows.

(1) Give an example of a matrix A which has fewer columns than rows and
whose columns are linearly dependent.

Consider the matrix 1 1

1 1

1 1


Call the columns v1 and v2 in order. Then there are nontrivial linear combina-
tions of the columns that produce the zero vector, for instance 2v1 − 2v2 = 0.
Hence the columns of the matrix are not linearly independent.

(2) Suppose A is a matrix which has the property that for any b ∈ Rm,
there exists at most one solution x ∈ Rn. Explain why the columns of A must
be linearly independent.

Remember if b is in the span of the columns of A, then there exist as many
solutions to Ax = b as there are to Ax = 0. So if any Ax = b has at most
one solution, then Ax = 0 has exactly one solution, namely the trivial solution.
But then the only linear combination of the columns of A that produces the
zero vector is the trivial combination in which all weights are zero. Hence, the
columns are linearly independent.
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(3) Let’s take another look at the 5 industry economic model we examined
in the last studio. The matrix describing how these industries bought from and
sold to one another was

C =


0.1 0.6 0.2 0 0.3

0.1 0.2 0 0.7 0.1

0.3 0 0.1 0.1 0.2

0.4 0.1 0.4 0.2 0.3

0.1 0.1 0.3 0 0.1


(a) Are the columns of C linearly independent?

Yes. We examine the RREF of C in order to learn about the solutions of
Cx = 0.

>> C

C =

0.1000 0.6000 0.2000 0 0.3000

0.1000 0.2000 0 0.7000 0.1000

0.3000 0 0.1000 0.1000 0.2000

0.4000 0.1000 0.4000 0.2000 0.3000

0.1000 0.1000 0.3000 0 0.1000

>> rref(C)

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Hence, the only linear combination of the columns of C which produces the zero
vector is the trivial combination in which all weights are zero. Therefore the
columns of C are linearly independent.

(b) How many, if any, production vectors p lead to a given total cost vector
c?

We can essentially recycle the answer to the last part. Remember that if
c is in the span of the columns of C, then there are as many solutions to the
inhomogeneous equation Cp = c as there are to the homogeneous equation
Cp = 0. Also recall that if there is a pivot in every row of C, then it is
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impossible that the system is inconsistent for any choice of c. Then since there
is a unique solution to Cp = 0, there is a unique solution to Cp = c for any
c ∈ R5.

(c) Last time we were trying to solve the equation (C − R)p = 0 in order
to determine the total production levels p necessary for all industries to break
even at the same time. We defined R to be the identity matrix with 5 rows and
columns I5. Are the columns of C −R linearly independent?

No. We examine the RREF of C − I, where I here is the 5 × 5 identity
matrix, in order to learn about the solutions of Cx = 0.

>> rref(C - eye(5))

ans =

1.0000 0 0 0 -2.4041

0 1.0000 0 0 -2.6700

0 0 1.0000 0 -1.3086

0 0 0 1.0000 -2.5651

0 0 0 0 0

There is a free variable, and so the homogeneous equation has infinitely many
solutions. Therefore the columns of C − I are linearly dependent.

(d) How many, if any, production vectors p lead to a break even scenario?

Infinitely many. This is a direct result of the previous part.

(e) Generate another cost matrix C, say for 3 industries. Are the columns
of C linearly independent? Are the columns of C −R linearly independent?

Let

C =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


The columns of C are not linearly independent. (Prove it to yourself.) The
columns of C − I3 are not linearly independent either:

>> C = [1/3 1/3 1/3;1/3 1/3 1/3;1/3 1/3 1/3;]

C =

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333

0.3333 0.3333 0.3333
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>> rref(C - eye(3))

ans =

1.0000 0 -1.0000

0 1.0000 -1.0000

0 0 0

The matrix C−I3 has a free variable, and so there are infinitely many solutions
to the homogeneous equation.

(f) Can you logically justify (meaning without Matlab) why in general the
columns of C would be linearly independent but the columns of C − R would
not?

I can’t; I was hoping one of you would come up with something clever. From
the last part, it’s clear that it’s not always true, but maybe it’s true “most of
the time.”
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B.5 Studio 2.1 solutions

(0) Define matrices

A =

 2.0 9.0 22.0 51.0

12.0 96.0 47.0 45.0

23.0 93.0 47.0 4.0

 , B =

14.0 84.0 81.0

66.0 93.0 39.0

31.0 3.0 58.0

 , C =


76.0 96.0 13.0

34.0 2.0 65.0

92.0 11.0 67.0

17.0 66.0 27.0


(a) Is AB defined? If so, what is its size?

No; A is 3 × 4, and B is 3 × 3. The inner dimensions do not agree, so the
matrix product is not defined.

(b) Is BA defined? If so, what is its size?

Yes; B is 3× 3, and A is 3× 4. So the product BA is 3× 4.

(c) Is AC defined? If so, what is its size?

Yes; A is 3× 4, and C is 4× 3. So the produce AC is 3× 3.

(d) Is CA defined? If so, what is its size?

Yes; A is C is 4× 3, and A is 3× 4. So the product CA is 4× 4.

(e) Is ABC defined? If so, what is its size?

No. Here it helps to remember that matrix multiplication is associative, so
we can think about ABC as either A(BC) or (AB)C. It really comes down
to which ever is convenient. Take (AB)C. We showed above that AB is not
defined, so (AB)C can’t be defined.

(f) Is CBA defined? If so, what is its size?

Yes; B is 3 × 3 and A is 3 × 4. So BA is 3 × 4. Then since C is 4 × 3 and
BA is 3× 4, the product C(BA) is 4× 4.
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using RREF the total production necessary to satisfy the final

demands represented by the vector

d =

10

20

30

 .

Let x be a vector containing the production of each industry. Recall the
intermediate demand is given by Cx, so that the total demand is Cx + d.
In order for production to exactly meet the total demand, it must be that
x = Cx + d. This implies that (I3 − C)x = d.

>> C = [0.2 0.7 0.1; 0.4 0.1 0.7; 0.1 0.1 0.1];

>> [eye(3) - C [10; 20; 30]]

ans =

0.8000 -0.7000 -0.1000 10.0000

-0.4000 0.9000 -0.7000 20.0000

-0.1000 -0.1000 0.9000 30.0000

>> rref([eye(3) - C [10; 20; 30]])

ans =

1.0000 0 0 135.2518

0 1.0000 0 131.2949

0 0 1.0000 62.9496

So industry 1 should produce 135.25 units, and so on.
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(2) If AB = 0 but neither A nor B is zero, we call A and B zero divisors.
Note that there are no zero divisors in the real numbers, so this isn’t something
we may have encountered so far. Matrices can be zero divisors. For instance, if
A and B are

A =

[
1 1 1 1

1 1 −1 −1

]
B =


1 −1

−1 1

1 1

−1 −1


show that AB is the zero matrix, so that both A and B are zero divisors.

This one is a simple Matlab exercise designed to make you practice actually
doing matrix multiplication:

>> [1 1 1 1; 1 1 -1 -1] * [1 -1; -1 1; 1 1; -1 -1]

ans =

0 0

0 0
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(3) (a) Unlike the real numbers, matrices do not typically commute, mean-
ing that AB 6= BA in general. To verify this statement, generate two random
3 × 3 matrices A and B and verify that they do not commute, that is, that
AB 6= BA.

First we define the matrices.

>> A = rand(3,3)

A =

0.8147 0.9134 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575

>> B = rand(3,3)

B =

0.9649 0.9572 0.1419

0.1576 0.4854 0.4218

0.9706 0.8003 0.9157

Now, if AB = BA, then AB −BA should be the zero matrix. But this is true:

>> A*B - B*A

ans =

-0.4707 -0.0544 -0.1722

0.8828 1.1196 0.1828

-0.5647 -0.5467 -0.6488

(b) Above we said that matrices do not commute in general. But some
matrices do commute. Come up with an example of matrix that commutes
with any square matrix A.

Both the identity matrix and the zero matrix commute with any square
matrix.
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(4) In the real numbers, if xy = xz, then y = z, because we can cancel the
x on each side. But with matrices, things are a little more complicated.

A =

[
3 4 5 6

7 8 9 10

]
, B =

[
2 3 4 5

6 7 10 11

]
, C =


1 −1

−1 1

1 1

−1 −1


(a) Show that AC = BC, and note that A 6= B.

We can easily verify the statement in Matlab.

>> A = [3 4 5 6; 7 8 9 10];

>> B = [2 3 4 5; 6 7 10 11];

>> C = [1 -1; -1 1; 1 1; -1 -1];

>> A*C - B*C

ans =

0 0

0 0

Hence AC = BC.

(b) Think about how zero divisors and cancellation are related. Use this to
come up with another example of matrices A and B such that AC = BC but
A 6= B.

Suppose we have matrices such that AC = BC. Then (A − B)C = 0, so
that A− B and C are zero divisors. Notice that from above (A− B)C = 0. If
we can find new matrices D and E such that D − E = A − B, then we’re all
set.A =
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B.6 Studio 2.2 solutions

(0) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vector

d =

10

20

30

 .

EDU>> C = [0.2 0.7 0.1; 0.4 0.1 0.7; 0.1 0.1 0.1]

C =

0.2000 0.7000 0.1000

0.4000 0.1000 0.7000

0.1000 0.1000 0.1000

EDU>> (eye(3) - C) \ [10;20;30]

ans =

135.2518

131.2950

62.9496

Compare this with the equivalent problem on Studio 5.
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vectors

d1 =

11

20

30

 , d2 =

10

20

30

 .

EDU>> C = [0.2 0.7 0.1; 0.4 0.1 0.7; 0.1 0.1 0.1];

EDU>> x1 = (eye(3) - C) \ [11; 20; 30]

x1 =

137.9137

132.8417

63.4173

EDU>> x2 = (eye(3) - C) \ [10; 20; 30]

x2 =

135.2518

131.2950

62.9496

(b) Confirm that the difference of the two production vectors you produced
is the first column of the matrix (I − C)−1.

EDU>> x1 - x2

ans =

2.6619

1.5468

0.4676

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.

(c) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

21

30

 , d2 =

10

20

30

 .
Keep C as in the previous part.

EDU>> x1 = (eye(3) - C) \ [10; 21; 30]

x1 =

137.5540

133.8489

63.4892

EDU>> x2 = (eye(3) - C) \ [10; 20; 30]

x2 =

135.2518

131.2950

62.9496

(d) Confirm that the difference in the productions you found in the previous
part is the second column of (I − C)−1.

EDU>> x1 - x2

ans =

2.3022

2.5540

0.5396

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.

(e) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

20

31

 , d2 =

10

20

30

 .

EDU>> x1 = (eye(3) - C) \ [10; 20; 31]

x1 =

137.3381

133.4532

64.5324

EDU>> x1 = (eye(3) - C) \ [10; 20; 30]

x1 =

135.2518

131.2950

62.9496

(f) Confirm that the difference in the productions you found in the previous
part is the third column of (I − C)−1.

EDU>> x1 - x2

ans =

2.0863

2.1583

1.5827

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.
(g) Show that the additional production necessary to satisfy one additional

unit of final demand for industry i is exactly the ith column of (I − C)−1.

Imagine d1 and d2 differ by 1 in component i and are identical in all other
components. Then if x1 = Cx + d1, x2 = Cx + d2 and I −C is invertible, then
the difference in production necessary to the satisfy the two demands is

∆x = x1 − x2

= (I − C)−1d1 − (I − C)−1d2

= (I − C)−1(d1 − d2)

= (I − C)−1



0
...

0

1

0
...

0


,

where the 1 in the vector in the last equality is in component i. Interpretting the
matrix-vector multiplication as a linear combination of the columns of (I−C)−1,
we have 0 weight on every column except column i, and weight 1 on column i.
Hence, ∆x is the ith column of (I − C)−1.
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(2) (a) Consider the parameterized model

x =

[
k 0.5

0.6 0.2

]
x + d

= Ckx + d.

For what values of k does the inverse C−1k exist?

The inverse exists so long as the determinant is nonzero. If you’re looking
to save time like I am, you type solve det({{k,0.5},{0.6,0.2}}) = 0 into
WolframAlpha and arrive at det(Ck) = 0 if and only if k = 1.5.

(b) Now consider the parameterized model

x =

[
0.1 0.5

k 0.2

]
x + d

= Bkx + d.

For what values of k does the inverse B−1k exist?

The inverse exists so long as the determinant is nonzero. If you’re looking to
save time like I am, you type solve det({{0.1, 0.5},{k, 0.2}}) = 0 into
WolframAlpha and arrive at det(Ck) = 0 if and only if k = 0.04.

(c) Now consider the parameterized model

x =

[
0.1 `

k 0.2

]
x + d

= A`,kx + d.

For what values of ` and k does the inverse A−1`,k exist?

The inverse exists so long as the determinant is nonzero. Here the determi-
nant is (0.1)(0.2)− k`, so the inverse exists so long as k` 6= (0.1)(0.2) = 0.02.
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(3) Generally, we can write a polynomial of degree n− 1 as

p(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1.

In order for p(x) to match our n data points exactly, it must be the case that
p(xi) = yi for every i = 1, 2, . . . , n. But each of these equalities amounts to
a linear combination of the coefficients a0, a1, . . . , an−1. We can encode these
linear combinations in a matrix equation:

1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...

1 xn x2n · · · xn−1n



a0

a1
...

an−1

 =


y1

y2
...

yn


V a = y.

We know that in general there is either no solution, a unique solution, or in-
finitely many solutions to a matrix equation like the one above. But here this
idea has a special context: if there is a unique solution to this matrix equation,
there is a unique polynomial of degree n − 1 that passes through our n data
points. Show that if the x1, x2, . . . , xn are all distinct, then V is invertible.
(Hint: feel free to use the fundamental theorem of algebra which says that a
polynomial p(x) of degree k has at most k distinct roots x1, x2, . . . , xk at which
p(xi) = 0.)

Suppose that there is a nontrivial solution to V a = 0. Then there is p(x) =
a0 + a1x + a2x

2 + . . . + an−1x
n−1 with not all the ai = 0 (i.e., not the zero

polynomial p(x) = 0) such that p(x1) = 0, p(x2) = 0, . . . , p(xn) = 0. Since all
the xi are distinct, we’ve found n distinct roots of p(x). But p(x) has degree
n− 1, so by the fundamental theorem of algebra p(x) can only have n− 1 roots.
This is a contradiction, and so the original claim cannot be true. That is to say,
there is no nontrivial solution to V a = 0.

It’s worth noting what this means in practical terms. If there is no nontrivial
solution to V a = 0, then there is a pivot in every column of V . Since V is square,
there is also a pivot in every row of V . These together imply that there is a
unique solution to any matrix equation V a = y. But remember, this matrix
equation encodes information about the polynomial p(x). To the uniqueness of
solutions in matrix language implies in the polynomial language that there is a
unique polynomial of degree n − 1 passing through any n data points, so long
as the x coordinates of all the data points are distinct. That’s pretty sweet.
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B.7 Studio 2.3 solutions

(0) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vector

d =

10

20

30

 .

EDU>> C = [0.2 0.7 0.1; 0.4 0.1 0.7; 0.1 0.1 0.1]

C =

0.2000 0.7000 0.1000

0.4000 0.1000 0.7000

0.1000 0.1000 0.1000

EDU>> (eye(3) - C) \ [10;20;30]

ans =

135.2518

131.2950

62.9496

Compare this with the equivalent problem on Studio 5.
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(1) Imagine that a Leontief input-output model has the consumption matrix

C =

0.2 0.7 0.1

0.4 0.1 0.7

0.1 0.1 0.1

 .
(a) Calculate using the matrix inverse the total production necessary to

satisfy the final demands represented by the vectors

d1 =

11

20

30

 , d2 =

10

20

30

 .

EDU>> C = [0.2 0.7 0.1; 0.4 0.1 0.7; 0.1 0.1 0.1];

EDU>> x1 = (eye(3) - C) \ [11; 20; 30]

x1 =

137.9137

132.8417

63.4173

EDU>> x2 = (eye(3) - C) \ [10; 20; 30]

x2 =

135.2518

131.2950

62.9496

(b) Confirm that the difference of the two production vectors you produced
is the first column of the matrix (I − C)−1.

EDU>> x1 - x2

ans =

2.6619

1.5468

0.4676

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.

(c) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

21

30

 , d2 =

10

20

30

 .
Keep C as in the previous part.

EDU>> x1 = (eye(3) - C) \ [10; 21; 30]

x1 =

137.5540

133.8489

63.4892

EDU>> x2 = (eye(3) - C) \ [10; 20; 30]

x2 =

135.2518

131.2950

62.9496

(d) Confirm that the difference in the productions you found in the previous
part is the second column of (I − C)−1.

EDU>> x1 - x2

ans =

2.3022

2.5540

0.5396

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.

(e) Calculate using the matrix inverse the total production necessary to
satisfy the final demands represented by the vectors

d1 =

10

20

31

 , d2 =

10

20

30

 .

EDU>> x1 = (eye(3) - C) \ [10; 20; 31]

x1 =

137.3381

133.4532

64.5324

EDU>> x1 = (eye(3) - C) \ [10; 20; 30]

x1 =

135.2518

131.2950

62.9496

(f) Confirm that the difference in the productions you found in the previous
part is the third column of (I − C)−1.

EDU>> x1 - x2

ans =

2.0863

2.1583

1.5827

The inverse is
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EDU>> inv(eye(3) - C)

ans =

2.6619 2.3022 2.0863

1.5468 2.5540 2.1583

0.4676 0.5396 1.5827

So everything checks out.
(g) Show that the additional production necessary to satisfy one additional

unit of final demand for industry i is exactly the ith column of (I − C)−1.

Imagine d1 and d2 differ by 1 in component i and are identical in all other
components. Then if x1 = Cx + d1, x2 = Cx + d2 and I −C is invertible, then
the difference in production necessary to the satisfy the two demands is

∆x = x1 − x2

= (I − C)−1d1 − (I − C)−1d2

= (I − C)−1(d1 − d2)

= (I − C)−1



0
...

0

1

0
...

0


,

where the 1 in the vector in the last equality is in component i. Interpretting the
matrix-vector multiplication as a linear combination of the columns of (I−C)−1,
we have 0 weight on every column except column i, and weight 1 on column i.
Hence, ∆x is the ith column of (I − C)−1.
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(2) (a) Consider the parameterized model

x =

[
k 0.5

0.6 0.2

]
x + d

= Ckx + d.

For what values of k does the inverse C−1k exist?

The inverse exists so long as the determinant is nonzero. If you’re looking
to save time like I am, you type solve det({{k,0.5},{0.6,0.2}}) = 0 into
WolframAlpha and arrive at det(Ck) = 0 if and only if k = 1.5.

(b) Now consider the parameterized model

x =

[
0.1 0.5

k 0.2

]
x + d

= Bkx + d.

For what values of k does the inverse B−1k exist?

The inverse exists so long as the determinant is nonzero. If you’re looking to
save time like I am, you type solve det({{0.1, 0.5},{k, 0.2}}) = 0 into
WolframAlpha and arrive at det(Ck) = 0 if and only if k = 0.04.

(c) Now consider the parameterized model

x =

[
0.1 `

k 0.2

]
x + d

= A`,kx + d.

For what values of ` and k does the inverse A−1`,k exist?

The inverse exists so long as the determinant is nonzero. Here the determi-
nant is (0.1)(0.2)− k`, so the inverse exists so long as k` 6= (0.1)(0.2) = 0.02.
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(3) Generally, we can write a polynomial of degree n− 1 as

p(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1.

In order for p(x) to match our n data points exactly, it must be the case that
p(xi) = yi for every i = 1, 2, . . . , n. But each of these equalities amounts to
a linear combination of the coefficients a0, a1, . . . , an−1. We can encode these
linear combinations in a matrix equation:

1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

...

1 xn x2n · · · xn−1n



a0

a1
...

an−1

 =


y1

y2
...

yn


V a = y.

We know that in general there is either no solution, a unique solution, or in-
finitely many solutions to a matrix equation like the one above. But here this
idea has a special context: if there is a unique solution to this matrix equation,
there is a unique polynomial of degree n − 1 that passes through our n data
points. Show that if the x1, x2, . . . , xn are all distinct, then V is invertible.
(Hint: feel free to use the fundamental theorem of algebra which says that a
polynomial p(x) of degree k has at most k distinct roots x1, x2, . . . , xk at which
p(xi) = 0.)

Suppose that there is a nontrivial solution to V a = 0. Then there is p(x) =
a0 + a1x + a2x

2 + . . . + an−1x
n−1 with not all the ai = 0 (i.e., not the zero

polynomial p(x) = 0) such that p(x1) = 0, p(x2) = 0, . . . , p(xn) = 0. Since all
the xi are distinct, we’ve found n distinct roots of p(x). But p(x) has degree
n− 1, so by the fundamental theorem of algebra p(x) can only have n− 1 roots.
This is a contradiction, and so the original claim cannot be true. That is to say,
there is no nontrivial solution to V a = 0.

It’s worth noting what this means in practical terms. If there is no nontrivial
solution to V a = 0, then there is a pivot in every column of V . Since V is square,
there is also a pivot in every row of V . These together imply that there is a
unique solution to any matrix equation V a = y. But remember, this matrix
equation encodes information about the polynomial p(x). To the uniqueness of
solutions in matrix language implies in the polynomial language that there is a
unique polynomial of degree n − 1 passing through any n data points, so long
as the x coordinates of all the data points are distinct. That’s pretty sweet.
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B.8 Studio 3.2 solutions

(0) Suppose that your car rental company has 2 locations, L1 and L2, that
together house 400 cars. Data indicate that on average 90% of the cars rented
at L1 are returned to L1, and 80% of cars rented at L2 are returned to L2.
(Thankfully, all cars are returned.)

(a) Write the transition matrix of this dynamical system.

T =

[
0.9 0.2

0.1 0.8

]

(b) Assume that cars are rented and returned weekly, and that each week
every car in both locations is rented. Calculate the distribution of cars after
week 1, week 3, and week 10, given an even initial distribution of cars.

>> T * [200; 200]

ans =

220

180

>> T^3 * [200; 200]

ans =

243.8000

156.2000

>> T^10 * [200;200]

ans =

264.7835

135.2165

Note these are the average distribution of cars at each location, so the fractional
number of cars indicated by the last two computations is not a problem.
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(c) Try several other initial conditions. Is the long term behavior of the car
distribution the same?

>> T^100 * [200;200]

ans =

266.6667

133.3333

>> T^100 * [100;300]

ans =

266.6667

133.3333

>> T^100 * [300;100]

ans =

266.6667

133.3333

Yes, all the initial conditions sampled here have the same long term distribution.

(d) Calculate the eigenpairs of the transition matrix, and use them to predict
the long term behavior of the system. What is the ratio of the number of cars
at each location?

>> [V,D] = eig(T)

V =

0.8944 -0.7071

0.4472 0.7071

D =

1.0000 0

0 0.7000

So the eigenpairs are (v1, λ1) = ([2, 1]T , 1) and (v2, λ2) = ([−1, 1]T , 0.7). The
dominant eigenpair is the first one. So in the long term, location 1 will have
twice as many cars as location 2.
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(e) Suppose now that you have 600 total cars. Is the long term behavior of
the system the same as before? What is the ratio of the number of cars at each
location?

The long term behavior of the system is the same in the sense that the ratio
of the cars at the two locations approaches 2:1. For instance,

>> T^100 * [100;500]

ans =

400.0000

200.0000

Since the transition matrix the same, the eigenpairs are the same, and in par-
ticular the dominant eigenpair is the same. So the long term ratio of cars in
location 1 to cars in location 2 is 2:1.
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(1) In one ecological model, the population of owls ot and population of
rats rt (in thousands) at time t (in months) is related to the populations at time
t+ 1 through the following matrix equation:

[
ot+1

rt+1

]
=

[
.5 .4

−p 1.1

][
ot

rt

]
xt+1 = Txt.

The entry p is known as the predation rate.
(a) What is the meaning of each entry of matrix?

Entry (1,1) means that in the absence of rats, only 50% of the owls at time
t will survive to time t+ 1. Entry (1,2) indicates that each 1000 rats is enough
to sustain 0.4 owls. Entry (2,1) means that every owl leads to p thousand fewer
rats in a month. Entry (2,2) indicates that in the absence of predations, there
will be 10% more rats at time t+ 1 than there are at time t.

(b) What are the units of the predation rate p? In other words, how is p
being measured in this model?

The predation rate is measured in thousands of rats per owl.

(c) Assume that p = 0.1. What happens to the populations in the long
term?

The eigenpairs of the transition matrix are

>> [V,D] = eig([.5 .4; -.1 1.1])

V =

-0.9822 -0.6071

-0.1876 -0.7947

D =

0.5764 0

0 1.0236

The dominant eigenpair is (v2, λ2) = ([0.6071, 0.7947]T , 1.02). Hence the total
populations grow together over time. The ratio of rats to owls in the long term
is 0.6071/0.7947 = 0.7639, so there are approximately 0.76 owls for every 1000
rats.

(d) Assume that p = 0.2. What happens to the populations in the long
term?

The eigenpairs of the transition matrix are
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>> [V,D] = eig([.5 .4; -.2 1.1])

V =

-0.8944 -0.7071

-0.4472 -0.7071

D =

0.7000 0

0 0.9000

The dominant eigenpair is (v2, λ2) = ([1, 1]T , 0.9). Hence the total populations
shrink together over time, and both populations eventually go extinct. As they
decline, the long term ratio of owls to rats is 1 owl for every 1000 rats.
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(2) One approach to conservation is through so called stage-based population
modeling. Typically in these models, we consider on the female members of the
species, because in biological terms males are often cheap; there are many males,
and most of them are not going to reproduce anyway. For instance, female orcas
have three stages: yearlings, juveniles, and mature. The yearly state transition
matrix for the female orca population is

T =

 0 0.0043 0.1132

0.9775 0.9111 0

0 0.0736 0.9534


(a) Interpret T (2, 1), T (3, 3), T (1, 3) and T (3, 2) in terms of the stage-based

population model.

Entry T (2, 1) indicates that 97.75% of yearlings survive to become juveniles.
Entry T (3, 3) indicates that each year 95.34% of adults survive. Entry T (1, 3)
indicates that each year there are roughly 11.32 births of yearlings per 100
adults. Entry T (3, 2) indicates that each year roughly 7.36% of the juvenile
population becomes adult.

(b) What is the long term behavior of the population of female orcas? What
is the ratio of juveniles to adults in the long term? What is the ratio of yearlings
to adults in the long term?

The eigenpairs of the transition matrix can be computed in Matlab.

>> [V,D] = eig([0 .0043 0.1132; 0.9775 0.9111 0; 0 0.0736 0.9534])

V =

0.6788 -0.0668 0.0816

-0.7321 0.8489 0.6972

0.0568 -0.5243 0.7123

D =

0.0048 0 0

0 0.8342 0

0 0 1.0254

So the dominant eigenpair is (v3, λ3) = ([0.0816, 0.6976, 0.7123]T , 1.0254). Since
the dominant eigenvalue is greater than 1, the population of females grows over
time. In the long term, the population will converge to a scalar multiple of the
dominant eigenvector. Therefore, there are roughly 0.6972/0.7123 = 97.88% as
many juveniles as there are adults, and there are roughly 0.0816 / 0.7123 =
11.46% as many many yearlings as there are adults.
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(3) Imagine that we model our business based on two types of customers:
one-time customers and repeat customers. These populations are disjoint, so
that every current customer is either a one-time or a repeat, but no customer
is both. Naturally (and hopefully), a one-time customer can become a repeat
customer. From data you’ve gathered, you know that each month 40% of your
one-time customers remain one-time customers. Around 10% of your repeat
customers refer a new customer each month. You also know that on average
95% of repeat customers continue to buy your goods, and that on average 30%
of one-time customers convert to repeat customers. (A common metric that
I’ve heard is that if a customer has not bought something from you in 3 months
then they are removed from the customer group.)

(a) Write a transition matrix for this model.

Let ot and rt be the number of one-time and repeat customers in month t,
respectively. Then

[
ot+1

rt+1

]
=

[
0.4 0.1

0.3 0.95

][
ot

rt

]
.

(b) High end industries often decide that repeat customers are the segment
on which they want to focus. After all, the pool containing their potential clien-
tele is small, so it makes sense to work hard to keep any customers you have.
Cheap products often rely on the fact that they will have a large number of con-
stantly changing one-time customers to support their business. Whatever your
strategy, it’s important make sure that you know what you’re getting yourself
into. In the long term, what will the ratio of one-time to repeat customers be
for the business in this model?

We can compute the eigenpairs of the transition matrix using Matlab.

>> [V,D] = eig([0.4 0.1; 0.3 0.95])

V =

-0.8944 -0.1644

0.4472 -0.9864

D =

0.3500 0

0 1.0000

So the dominant eigenpair is (v2, λ2) = ([0.1644, 0.9864]T , 1). In the long term,
the customer populations will approach a scaled version of the dominant eigen-
vector. Therefore, the ratio of one-time to repeat customers in the long term of
this model is 0.1644 / 0.9864 = 16.67%.
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(4) Suppose your business has a three tiered customer loyalty program.
Every customer opting in to the program is assigned to either the bronze, silver
or gold category. Customers do not need to progress through the levels in order;
for instance, a customer can go directly from being a bronze category member
to being a gold category member. Users can also slip; for instance, a customer
can go from being a silver category member to being a bronze category member.
Let bt, st and gt be number of customers in each of these populations in month
t. Through data collection and analysis, you have proposed a model for the
rates at which customers transition between these class from month to month.
You can express your model using the following matrix equation:bt+1

st+1

gt+1

 =

0.4 0.6 0.1

0.6 0.2 0.2

0.1 0.2 0.8


btst
gt


xt+1 = Cxt

(a) Describe in words the meaning of entry (3,1) of C.

Entry (3,1) of C indicates that 10% of the bronze members become gold
members each month.

(b) Find the eigenvalues and associated eigenvectors of C.

We can do this easily using Matlab.

>> [V,D] = eig([0.4 0.6 0.1; 0.6 0.2 0.2; 0.1 0.2 0.8])

V =

0.6338 0.5168 0.5755

-0.7692 0.3431 0.5390

0.0811 -0.7843 0.6151

D =

-0.3154 0 0

0 0.6466 0

0 0 1.0688

(c) In the long term, what percentage of the total number of customers
enrolled in your loyalty program do you expect to be in the gold category?

The dominant eigenpair is (v3, λ3) = ([0.5755, 0.5390, .6151]T , 1.0688). Since
the dominant eigenvalue is greater than 1, the total number of customers is
increasing over time. Moreover, after several months the customer populations
will converge to a scaled version of the dominant eigenvector. Therefore, the
percentage of the total number of customers that are gold status will be roughly
0.6151 / (0.5755 + 0.5390 + .6151) = 35.56%.
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B.9 Studio 3.3 solutions

(0) Define

C =

[
13 −4

−4 7

]
.

(a) Use the characteristic equation to determine the eigenvalues of C.

The characteristic equation is

det(C − λI) = det

[
13− λ −4

−4 7− λ

]
= (13− λ)(7− λ)− (−4)(−4)

= λ2 − 20λ+ 75

= (λ− 15)(λ− 5).

So the eigenvalues of C are λ1 = 15 and λ2 = 5.

(b) Using the eigenvalues you found in the previous part, compute the eigen-
vectors of the matrix.

To find an eigenvector v1 = [v1, v2]T corresponding to λ1, we need to find a
nontrivial solution to the homogeneous equation

(C − λI)v1 = 0.

We can use Matlab for this.

EDU>> C = [13 -4; -4 7]

C =

13 -4

-4 7

EDU>> rref(C - 15*eye(2))

ans =

1 2

0 0

So, reading off the first line of the row reduced matrix, we have v1 = −2v2 and
so v1 = [v1, v2]T = [−2v2, v2]T = v2[−2, 1]T . Taking v2 = 1, which is valid
because v2 is free, we have v1 = [−2, 1]T .

We follow a similar process to find v2 = [v1, v2]T .
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EDU>> rref(C - 15*eye(2))

ans =

1 2

0 0

EDU>> rref(C - 5*eye(2))

ans =

1.0000 -0.5000

0 0

So v1 = (1/2)v2. This implies that v2 = [v1, v2]T = [(1/2)v2, v2]T = v2[1/2, 1]T .
Setting v2 = 1 gives the eigenvector v2 = [1/2, 1]T .
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(1) Consider an animal species that has two life stages: juvenile (up to 1
year old) and adult. Suppose that females give birth each year to an average of
1.6 female juveniles. Each year, 30% of the juveniles survive to become adults,
and 80% of the adults survive.

(a) Construct a stage-based population model for this species. Develop a
matrix T that links the populations in year t, xt to the populations in year t+1,
xt+1 via xt+1 = Txt.

Let xt = [jt, at]
T , where jt and at are the numbers of juveniles and adults

present at time t, respectively. Using this ordering, we can write the associated
transition matrix.

T =

[
0 1.6

0.30 .80

]
.

(b) What is the ratio of adults to juveniles in the long term?
In the long term, the population vector will be approximately equal to a

scalar multiple of the dominant eigenvector. Matlab can easily compute the
eignpairs of T .

EDU>> T = [0 1.6; 0.3 0.8]

T =

0 1.6000

0.3000 0.8000

EDU>> [V,D] = eig(T)

V =

-0.9701 -0.8000

0.2425 -0.6000

D =

-0.4000 0

0 1.2000

So the dominant eigenvalue is λ = 1.2 and has associated dominant eigenvector
[0.8, 0.6]T . To the ratio of juveniles to adults in the long term is 0.8/0.6 = 4/3.
So there are approximately 1.3 juveniles for every adult.

(c) Suppose now that the average number of female offspring an adult bears
each year is represented by a parameter k. Use the characteristic equation of
the matrix Tk to find the dominant eigenpair of the system. What is the effect
of k on the eigenvalues?
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Our transition matrix now reads

T =

[
0 k

0.30 .80

]
.

The characteristic equation is

det(T − λI) = det

[
−λ k

0.30 .80− λ

]
= −λ(0.8− λ)− (0.3)k

We can find the roots of the characteristic equation using WolframAlpha or
some other symbolic calculator.

λ1,2 ≈ 0.4± 0.5
√

1.2k + 0.64.

Assuming that k is positive, the argument of the square root function will always
be positive, so we never have complex roots. For very small k, both eigenvalues
are greater than 1. As k is increased, one eigenvalue increases while the other
decreases. The dominant eigenvalue will be λ1 ≈ 0.4 + 0.5

√
1.2k + 0.64 for all

values of k.

(d) What is the long term ratio of adults to in the preceding part? If the
distribution depends on k, be sure to clearly indicate how.

We could always muscle through a problem like this by hand, but it’s much
easier (and more accurate) to use a symbolic calculator like WolframAlpha.
Using the command Eig[{{0,k},{0.3,0.8}}] gives a dominant eigenvector

v1 ≈

[
−1.33 + 1.66

√
0.64 + 1.2k

1

]

When k = 0 (i.e., the adults are not reproducing), this eigenvector actually
predicts that there will be a negative number of juveniles for each adult, and
we should interpret this as zero juveniles for each adult. For k > 0.002, we
have a positive number of juveniles for each 1 adult. This ratio is −1.33 +
1.66
√

0.64 + 1.2k. So the ratio of juveniles to adults grows as
√
k.

(e) Now let ` represent the percentage of juveniles that survive to adulthood,
and assume as before that each female adult bears on average 1.6 female offspring
per year. Use the characteristic equation of the matrix T` to find the dominant
eigenpair of the system. What is the affect of ` on the eigenvalues?

Our transition matrix now reads

T =

[
0 1.6

` .80

]
.
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The characteristic equation is

det(T − λI) = det

[
−λ 1.6

` .80− λ

]
= −λ(0.8− λ)− 1.6`.

Using the command Eig[{{0,1.6},{\ell,0.8}}] in WolframAlpha gives
the eignpairs of the system. The dominant eigenvalue is λ1 ≈ 0.4+0.5

√
6.4`+ 0.64.

Notice that if ` is positive, then the dominant eigenvalue is always positive, so
the populations are growing together in the long term.

(f) What is the long term ratio of adults to in the preceding part? If the
distribution depends on `, be sure to clearly indicate how.

WolframAlpha also gives us the dominant eigenvector of the transition ma-
trix via the command Eig[{{0,1.6},{\ell,0.8}}].

v1 ≈

[
−0.4+0.5

√
6.4`+0.64
`

1

]
.

Again, for ` = 0 (i.e., no offspring are surviving to become adults), this predic-
tion doesn’t make much sense. But if some offspring are surviving, then we get
a more reasonable prediction. Notice that the ratio of juveniles to adults grows
in a more complicated way depending on ` than in the previous subproblem.
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(2) Let (v, λ) be an eigenpair of an invertible matrix A. Show that (v, 1/λ)
is an eigenpair of A−1.

We need to confirm that A−1v = (1/λ)v given that Av = λv with A invert-
ible. We know A−1A = I by the definition of the matrix inverse.

Av = λv

A−1Av = λA−1v

v = λA−1v.

For this equality to hold, it must be the case that A−1v = (1/λ)v.

(3) Show that if λ is an eigenvalue of A, then λ is an eigenvalue of AT .
(Hint: consider how A− λI and AT − λI are related.)

An eigenvalue λ of A is a root of the characteristic equation det(A − λI).
Note that AT − λI = (A − λI)T . Since detB = detBT for any square matrix
B, we have that det(A − λI) = det((A − λI)T ) = det(AT − λI) so that the
characteristic equations of A and AT are the same. Hence, the roots of the
characteristic equations of A and AT are the same.

(a) Show that if λ is an eigenvalue of AT , then λ is an eigenvalue of A.

To show this, we use the same reasoning as above, only backwards.
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(4) We say that a matrix T is column stochastic if it has only non-negative
entries and its columns each sum to 1. For an example, our transition matrix
from the bike rental example

T =

[
0.8 0.4

0.2 0.6

]
is column stochastic.

(a) Using the characteristic equation, compute the eigenvalues of T .

The characteristic equation T is

det(T − λI) = det

[
0.8− λ 0.4

0.2 0.6− λ

]
= (0.8− λ)(0.6− λ)− (0.4)(0.2)

= λ2 − 1.4λ+ .4

= (λ− 1)(λ− 0.4).

So the eigenvalues of T are λ1 = 1 and λ2 = 0.4.

(b) Using the eigenvalues you found in the previous part, compute the as-
sociated eigenvectors of T .

The eigenvector v1 associated with λ1 = 1 is a nontrivial solution to (T −
I)v1 = 0. We can use Matlab to solve this linear system.

EDU>> T = [0.8 0.4; 0.2 0.6];

EDU>> rref(T - eye(2))

ans =

1 -2

0 0

So the eigenvector v1 = [v1, v2]T must satisfy v1 = 2v2. So v1 = [v1, v2]T =
[2v2, v2]T = v2[2, 1]T . By setting v2 = 1, which is valid because v2 is free in this
context, we have v1 = [2, 1]T .

We can follow a similar process to find the eigenvector v2 associated with
λ = 0.4.

EDU>> rref(T - 0.4*eye(2))

ans =

1 1

0 0

So the eigenvector v2 = [v1, v2]T must satisfy v1 = −v2. So v2 = [v1, v2]T =
[−v2, v2]T = v2[−1, 1]T . By setting v2 = 1, which is valid because v2 is free in
this context, we have v2 = [−1, 1]T .
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(c) Show that any 2 × 2 column stochastic matrix T has λ = 1 as an
eigenvalue. (Hint: let T (1, 1) = p and T (2, 2) = q.)

Since the columns must each sum to 1, we have

T =

[
p 1− q

1− p q

]
.

Then the characteristic equation of T is

det(T − lambdaI) = det

[
p− λ 1− q
1− p q − λ

]
= (p− λ)(q − λ)− (1− p)(1− q)
= λ2 − (p+ q)λ+ pq − 1 + p+ q − pq

If λ = 1 is a root of this equation, then λ = 1 is an eigenvalue of T . We can
verify this by substitution.

(λ2 − (p+ q)λ+ pq − 1 + p+ q − pq)|λ=1 = 1− p− q + pq − 1 + p+ q − pq
= 0

So λ = 1 is indeed an eigenvalue of T .

(d) Show that for any column stochastic matrix T , the vector [1, 1, . . . , 1]T is
an eigenvector of TT with eigenvalue λ = 1. Use a previous problem to conclude
that λ = 1 is an eigenvalue of T . Comment on the relevance of this result to
the long term distribution of a dynamical system with transition matrix T .

We know from a previous problem that if λ is an eigenvalue of TT , then λ
is an eigenvalue of T , too. Since the columns of T sum to 1, we have

TT1 = 1,

where 1 a vector with 1 in every component. So 1 is an eigenvector of TT with
associated eigenvalue λ = 1. Since λ = 1 is an eigenvalue of TT , it is also an
eigenvalue of T .

This result almost implies that any dynamical system that has as its tran-
sition matrix a column stochastic matrix has a steady state population distri-
bution in the long term. I saw “almost” here because we would have to verify
that the eigenvalue λ = 1 is in fact dominant in T before we can make the full
conclusion. We’ll see when this last condition holds in a future studio.
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B.10 Studio 3.4 solutions

(0) Give the scaling factor r and the rotation angle φ for the following matrices:

A =

[√
3 1

−1
√

3

]
, B =

[
4 −3

3 4

]
, C =

[
40 −9

9 40

]
.

Recall from class that for matrices of the form[
a b

−b a

]

the scaling factor is r = |λ| =
√
a2 + b2, and the rotation angle is φ = sin−1(b/r)

(a) rA =

√√
3
2

+ 12 =
√

4 = 2 and φA = sin−1(1/2) = π/6 radians or
360φA/(2π) = 30 degrees.

(b) rB =
√

42 + 32 =
√

25 = 5 and φB = sin−1(3/5) = 0.6435 radians or
360φB/(2π) ≈ 36.8699 degrees.

(c) rC =
√

402 + 92 =
√

1681 = 41 and φC = sin−1(9/41) = 0.22 radians or
360φC/(2π) ≈ 12.68 degrees.
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(1) The population of spotted owls can be broken into three classes: juve-
niles, subadults and adults. These populations can be related to one another
through the dynamical systemjt+1

st+1

at+1

 =

 0 0 0.33

0.18 0 0

0 0.71 0.94


jtst
at


xt+1 = Txt.

(a) What is the meaning of entry T (3, 2) in this model? What is the meaning
of entry T (1, 3)?

Entry T (3, 2) denotes the percentage of subadults surviving to become adults
each year. Entry T (1, 3) denotes the average number of offspring per 1 adult.

(b) What is the long term fate of the population of owls? Is the ratio of the
populations constant in the long term?

The long term behavior of the populations is determined by the dominate
eigenpair.

EDU>> [V,D] = eig([0 0 0.33; 0.18 0 0; 0 0.71 0.94])

V =

0.6821 0.6821 0.3175

-0.0624 - 0.5896i -0.0624 + 0.5896i 0.0581

-0.0451 + 0.4256i -0.0451 - 0.4256i 0.9465

D =

-0.0218 + 0.2059i 0 0

0 -0.0218 - 0.2059i 0

0 0 0.9836

It may be unclear right off the bat whether the complex eigenvalues have norm
(absolute value) greater than 1. We can easily test in Matlab.

EDU>> abs(-0.0218 + 0.2059i)

ans =

0.2071

So the dominant eigenvalue is λ = 0.9836, and so the populations go extinct
together in the long term. Since the dominant eigenvalue is real, there is no
“rotation” in the behavior of the populations. The ratio of populations as the
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species declines approaches a steady state determined by the dominant eigen-
vector.

(c) Now assume that through concerted conservation efforts, the percentage
of juveniles surviving to subadulthood has been increased to 50% from the
original model. What is the long term fate of the population of owls? Is the
ratio of the populations constant in the long term?

The new eigenvalues are

EDU>> [V,D] = eig([0 0 0.33; 0.5 0 0; 0 0.71 0.94])

V =

-0.0774 + 0.4782i -0.0774 - 0.4782i 0.2976

0.7240 0.7240 0.1421

-0.4660 - 0.1549i -0.4660 + 0.1549i 0.9441

D =

-0.0534 + 0.3302i 0 0

0 -0.0534 - 0.3302i 0

0 0 1.0469

Again, it may be unclear whether the complex eigenvalues dominant. We can
verify in Matlab that they do not.

EDU>> abs(-0.0534 + 0.3302i)

ans =

0.3345

So the populations grow together over time. Since the dominant eigenvalue is
real, there is no “rotation” involved in their growth. In the long term, the ratio
of populations approaches a steady state that is determined by the dominant
eigenvector.
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(2) One approach to conservation is through so called stage-based population
modeling. For an example, imagine that American bison females can be divided
into calves (up to 1 year old), yearlings (1 to 2 years old), and adults. Suppose on
average 42 female calves are born each year per 100 adult females. (Only adults
produce offspring.) Each year, about 60% of the calves survive, 75% of the
yearlings survive, and 95% of the adults survive. For t ≥ 0, let xt = [ct yt at]

T

be the population vector representing the females in the herd.
(a) Construct a matrix A for the herd so that xt+1 = Axt for t ≥ 0.

The transition matrix for this dynamical system is

A =

 0 0 0.42

0.62 0 0

0 0.75 0.95

 .
(b) Show that the buffalo herd is growing, determine the expected growth

rate after many years, and give the expected number of calves and yearlings
present per 100 adults.

The eigenpairs of the system are

EDU>> [V,D] = eig([0 0 0.42; 0.62 0 0; 0 0.75 0.95])

V =

-0.0926 + 0.4802i -0.0926 - 0.4802i 0.3475

0.7225 0.7225 0.1943

-0.4537 - 0.1816i -0.4537 + 0.1816i 0.9173

D =

-0.0794 + 0.4121i 0 0

0 -0.0794 - 0.4121i 0

0 0 1.1088

It may be unclear whether the complex eigenvalues are dominant. We can verify
with Matlab that they are not.

EDU>> abs(-0.0794 + 0.4121i)

ans =

0.4197

So the dominant eigenvalue of the matrix is λ = 1.1088 which indicates that the
population of the herd is growing at a rate of 10% per year. In the long term, the
ratios of populations in the herd will stabilize to those found in the dominant
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eigenvector, here v = [0.3475, 0.1943, 0.9173]T . So the number of calves and
yearlings per 100 adults is 100(0.3475 + 0.1943)/0.9173 ≈ 59.
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(3) For a 2 × 2 matrix A, we can find an interesting relationship between
the entries A and its eigenvalues. We’ll need an additional piece of terminology
to complete this formulation. The trace of a matrix A is the sum of the entries
along the main diagonal, that is, the sum of all entries in positions (i, i). So for
an arbitrary 2× 2 matrix

A =

[
a b

c d

]

the trace is τ = tr(A) = a+d. Recall that the determinant of A is ∆ = det(A) =
ad− bc.

(a) Show that the characteristic equation of A is λ2 − τλ+ ∆.

The characteristic equation of A is

det(A− λI) = det

[
a− λ b

c d− λ

]
= (a− λ)(d− λ)− bc
= λ2 − (a+ d)λ+ ad− bc
= λ2 − τλ+ ∆

(b) Take a second to think about what this means: to understand the eigen-
values of a 2 × 2 matrix, we don’t need to look at all 4 of the entries; we just
need to consider two quantities, τ and ∆, that are related to the entries of the
matrix. In essence, this cuts the complexity of the problem in half! (There’s
nothing to answer here. Just take a second to appreciate this fact.)

(c) Show that A has only real eigenvalues if and only if τ2 ≥ 4∆.

Using the quadratic equation, the roots of λ2 − τλ+ ∆ = 0 are

λ1,2 =
τ ±
√
τ2 − 4∆

2
.

The only way the eigenvalues can be complex is if the argument of the square
root is negative, but the argument is positive if τ2 ≥ 4∆.

(d) Show that if A is the transition matrix of a dynamical system, then the
populations go to zero in the long term if τ < 0 and ∆ > 0.

If ∆ > 0, then
√
τ2 − 4∆ < |τ |. Then since τ < 0, we have τ ±

√
τ2 − 4∆ <

0. This implies that both of the eigenvalues are negative, and therefore all
populations go extinct in the long term.



302 APPENDIX B. STUDIO SOLUTIONS

(4) Over the course of the next several parts, we’ll show that any symmetric
matrix has only real eigenvalues. This is known as the spectral theorem. This
will also give us a chance to practice manipulating complex numbers.

(a) Let v be a vector with complex entries. Show that v̄Tv has only real
entries.

For a more concrete example, we’ll deal with a vector v with three compo-
nents. The reasoning is exactly the same in the n component case. Expanding
the original statement in terms of the components gives

v̄Tv =
[
v̄1 v̄2 v̄3

]T v1v2
v3


=

v̄1v1v̄2v2

v̄3v3

 .
Notice that v̄1v1 = |v1|2 which is a real number. The same holds for the other
components of the product. Thus, the inner product v̄Tv has only real entries.

(b) Now let (v, λ) be a (possibly complex) eigenpair of a symmetric matrix
A. Show that v̄TAv = λv̄Tv.

We know that Av = λv. Using this fact, we arrive at v̄T (Av) = v̄T (λv) =
λv̄Tv as desired.

(c) Let (v, λ) be the same eigenpair of the symmetric A as in the last part.
Show that v̄TAv = λ̄v̄Tv. (Hint: you’ll have to use the fact that A is symmetric
here.)

Recall that (ABC)T = CTBTAT for matrices A,B,C. Applied to the quan-
tity we’re working with, we find (v̄TAv)T = vTAT v̄. Since A is symmetric,
AT = A so that (v̄TAv)T = vTAv̄.

From class we know that if Av = λv, then Av̄ = λ̄v̄, too. Stated another
way, eigenpairs appear in complex conjugate pairs. So (v̄TAv̄)T = vTAv̄ =
λ̄vT v̄. This implies that v̄TAv̄ = (λ̄vT v̄)T = λ̄v̄Tv.

(d) Combine the last two parts to show that λ must be real. (Hint: consider
the two equivalent ways to write v̄TAv and combine this with fact that v̄Tv is
real.)

We’ve show that v̄TAv = λv̄Tv, v̄TAv = λ̄v̄Tv and that v̄Tv is a real
number. Then

λv̄Tv = λ̄v̄Tv

λ = λ̄

But the only way that a complex number can equal its own conjugate is if it is
in fact a real number, i.e., a complex number with zero imaginary component.
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B.11 Studio 4.1 solutions

(0) Let v1,v2, . . . ,vk be vectors in Rn. Show that span(v1,v2, . . . ,vk) is a
subspace of Rn.

A vector is in the span if and only if it has the form b = c1v1 + c2v2 + . . .+
ckvk. Define b1 = c1v1 + c2v2 + . . .+ ckvk and b = d1v1 + d2v2 + . . .+ dkvk.
We can use the two step subspace test to verify that the span is subspace.

b1 + b2 = (c1v1 + c2v2 + . . .+ ckvk) + (d1v1 + d2v2 + . . .+ dkvk)

= (c1 + d1)v1 + (c2 + d2)v2 + . . .+ (ck + dk)vk

= e1v1 + e2v2 + . . .+ ekvk.

So the sum of two vectors in the span is also in the span. We can complete the
second step of the test.

αb1 = α(c1v1 + c2v2 + . . .+ ckvk)

= αc1v1 + αc2v2 + . . .+ αckvk

= f1v1 + f2v2 + . . .+ fkvk.

So scalar multiples of a vector in the span are also in the span.
We conclude that all spans are subspaces.

(1) Let Pn be the collection of all polynomials of degree n and smaller.
Show that Pn is a vector space.

A polynomial is in Pn if and only if it has the form p(x) = c0+c1x+. . .+cnx
n.

We can use the two step subspace test to verify that Pn is vector space. Define
p(x) = c0 + c1x+ . . .+ cnx

n and q(x) = d0 + d1x+ . . .+ dnx
n.

p(x) + q(x) = (c0 + c1x+ . . .+ cnx
n) + (d0 + d1x+ . . .+ dnx

n)

= (c0 + d0) + (c1 + d1)x+ . . .+ (cn + dn)xn

= e0 + e1x+ . . . enx
n.

So the sum of two elements from Pn is also in Pn. We can complete the second
test of the test.

αp(x) = α(c0 + c1x+ . . .+ cnx
n)

= αc0 + αc1x+ . . .+ αcnx
n

= f0 + f1x+ . . . fnx
n.

So scalar multiples of elements from Pn is also in Pn. We conclude that Pn is a
vector space.

(2) Let Mm×n be the collection of all m× n matrices. Show that Mm×n is
a vector space. (Here, the matrices are the “vectors” of the vector space.)
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The sum of two matrices M and N of size m × n is also a matrix of size
m×n, since matrix addition is performed component-wise. The scalar multiple
αM is also a matrix of size m × n is also a matrix of size m × n. All of the
arithmetic rules associated with a vector space hold. We conclude Mm×n is a
vector space.

(3) Define

A =

[
1 2 4 0

0 1 3 −2

]
, B =

1 3 −4 −3 1

0 1 −3 1 0

0 0 0 0 0


(a) Find a collection of vectors that span ker(A).

A vector x is in the kernel of A if and only if Ax = 0. To find such vectors,
we need only row reduce the coefficient matrix A.

>> A = [1 2 4 0; 0 1 3 -2];

>> rref(A)

ans =

1 0 -2 4

0 1 3 -2

Define x = [x1, x2, x3, x4]T . Then the first line reads x1 = 2x3 − 4x4 and the
second line reads x2 = −3x3 + 2x4. Substituting gives an expression for x in
terms of two vectors.

x =


x1

x2

x3

x4

 =


2x3 − 4x4

−3x3 + 2x4

x3

x4

 = x3


2

−3

1

0

+ x4


−4

2

0

1

 .
Since both x3 and x4 are free, we conclude that the kerA = span([2,−3, 1, 0]T , [−4, 2, 0, 1]T .

(b) Find a collection of vectors that span ker(B).
We follow a similar procedure to the previous part.

>> B = [1 3 -4 -3 1; 0 1 -3 1 0; 0 0 0 0 0];

>> rref(B)

ans =

1 0 5 -6 1

0 1 -3 1 0

0 0 0 0 0
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Define x = [x1, x2, x3, x4, x5]T . Then the first line reads x1 = −5x3 + 6x4 − x5,
the second line reads x2 = 3x3−x4, and the third line reads 0 = 0. Substituting
gives an expression for x in terms of three vectors.

x =


x1

x2

x3

x4

 =


−5x3 + 6x4 − x5

3x3 − x4
x3

x4

x5

 = x3


−5

3

1

0

0

+ x4


6

−1

0

1

0

+ x5


−1

0

0

0

1

 .

Since x3, x4, and x5 are free, we conclude that ker(B) = span([−5, 3, 1, 0, 0]T , [6,−1, 0, 1, 0]T , [−1, 0, 0, 0, 1]T ).

(4) Let H and K be two subspaces of a vector space of V . We define the
intersection of H and K, denoted H ∩K, to be the collection of all vectors from
V that are in both H and K.

(a) Show that H ∩K is a subspace of V .

Let x and y both be members of the intersection H ∩K. We’ll use the two
step subspace test to verify that the intersection is a subspace of V . For the
first step, we need to verify that x + y is a member of H ∩K. But since H is
a subspace of V , sums of vectors in H are also in H. So x + y is also in H. A
similar argument shows that x + y is in K, too. Then since x + y is in both H
and K, it is also in the intersection H ∩K. An identical argument shows that
αx is in H ∩ K. Since the intersection passes the two step test, we conclude
that all intersections of vectors subspaces are themselves vector subspaces.

(b) Let’s see a concrete example. Define

v1 =

5

3

8

 , v2 =

1

3

4

 , v3 =

 2

−1

5

 , v4 =

 0

−12

−28


Let H = span(v1,v2) and K = span(v3,v4). Then both H and K are planes
in 3-dimensional space, both pass through the origin, and their intersection is a
line. Write a short sentence explaining why the preceding statements are true.

The span of two vectors in 3-dimensional space is a plane. Two non-identical
and non-parallel planes intersect in a line. Since any vector space must include
the zero vector, and since both H and K are vector spaces, they cannot be
parallel because they both share the zero vector. They are clearly not identical.
So their intersection must be a line in the 3-dimensions.

(c) Now let’s get more quantitative. If the intersection of H and K is a line,
then it is the span of a single vector w. Find this vector. (Hint: if w is in H,
then w = c1v1 + c2v2, and if w is in K, then w = c3v3 + c4v4.
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We can follow our noses here.

c1v1 + c2v2 = c3v3 + c4v4

c1v1 + c2v2 − c3v3 − c4v4 = 0

[
v1 v2 −v3 −v4

]
c1

c2

c3

c4

 = 0

Ac = 0.

So the coefficient vector c is the in of A. Then to find c, it suffices to row reduce
the coefficient matrix A. Matlab can help us with the computation.

>> A = [5 3 8; 1 3 4; -2 1 -5; 0 12 28]’

A =

5 1 -2 0

3 3 1 12

8 4 -5 28

>> rref(A)

ans =

1.0000 0 0 -3.3333

0 1.0000 0 8.6667

0 0 1.0000 -4.0000

So the coefficient vector is has the form

c =


3.33c4

−8.66c4

4c4

c4

 = c4


3.33

−8.66

4

1

 .
The fact that c4 is free here is not a problem; in fact, it’s to be expected.
Since the intersection H ∩K is the span of a single vector, we can write in an
infinite number of different and equivalent ways. Take c1 = 1. Then recall that
w = c1v1 + c2v2 and w = c3v3 + c4v4. We can confirm that we actually have
found c1, c2, c3, c4 such that the two formulations of w are equivalent.

>> 3.33*[5;3;8] - 8.66*[1;3;4]

ans =



B.11. STUDIO 4.1 SOLUTIONS 307

7.9900

-15.9900

-8.0000

>> 4*[2;-1;5]+1*[0;-12;-28]

ans =

8

-16

-8

(Note that there is some roundoff error here, because I’ve only used the first few
decimals of some of the weights. The two answers are essentially equivalent.)
So H ∩K = span(w) = span([8,−16,−8]T ).

(5) Let H and K be two subspaces of a vector space V . The union of H
and K, denoted H ∪ K, is collection of all vectors of V that are in H or K.
Show that H ∪ K is not necessarily a subspace of V by given an example in
which H and K are subspaces of R2.

Let H = span([1, 0]T ) and K = span([0, 1]T ). Then the union of the
subspaces is all vectors of the for c1[1, 0]T or c2[0, 1]T . But notice that the
sum of two vectors in H ∪ K is not necessarily in the subspace. For instance
[1, 0]T + [0, 1]T = [1, 1]T is not in H or K. Since the union H ∪K fails the first
step of the two step subspace test, it is not a subspace of R2.

(6) Let H and K be subspaces of a vector space V . The sum of H and K,
denoted H + K is the collection of vectors from V that can be written as the
sum of a vector in H and a vector in K.

(a) Show that H +K is a subspace of V .

Define x and y to be two vectors in the sum H + K. Then both x and y
are sums of vectors in H and K. Then it follows directly that the sum of x and
y are also sums of vectors in H and K. Said differently, x + y is in H +K. An
equivalent argument shows that αx must be in H +K.

(b) Show that H is a subspace of H +K and K is a subspace of H +K.

Let x and y be two vectors in H. Clearly the sum of the two vectors and
scalar multiples of the vectors are in H, too, since H is a vector space in its
own right. Since H is entirely include in H + K via H = H + 0, where we’re
thinking of the zero vector as an element of K here, we conclude H is a subspace
of H +K. An identical argument shows that K is a subspace of H +K.
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(7) Let a1,a2, . . . ,a5 be the columns of matrix A, where

A =


5 1 2 2 0

3 3 2 −1 −12

8 4 4 −5 12

2 1 1 0 −2

 , B =
[
a1 a2 a4

]

(a) Are a3 and a5 in im(B)?

Determining whether these statements are true takes us way back to the
beginning of the semester; these are fundamental questions about solutions to
linear systems. Each vector is in the image of B if and only if Bx = a3 (or a5)
has a valid solution x. Ultimately this is a Matlab exercise.

>> B = [ 5 3 8 2; 1 3 4 1; 2 -1 -5 0]’

B =

5 1 2

3 3 -1

8 4 -5

2 1 0

>> rref([B [2;2;4;1]])

ans =

1.0000 0 0 0.3333

0 1.0000 0 0.3333

0 0 1.0000 0

0 0 0 0

We conclude that a3 is in im(B), and in particular a3 = 0.33a1 + 0.33a2.
For a5, we perform a similar exercise.

>> rref([B [0;-12;12;-2]])

ans =

1.0000 0 0 3.3333

0 1.0000 0 -8.6667

0 0 1.0000 -4.0000

0 0 0 0

We conclude that a5 is in im(B), and in particular a5 = 3.33a1 − 8.66a2 − 4a4.

(b) Find a collection of vectors that spans ker(B).
A vector x is in the kernel of B if and only if Bx = 0. We can find solutions

to the homogeneous equation by row reducing the coefficient matrix A.
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>> rref(B)

ans =

1 0 0

0 1 0

0 0 1

0 0 0

Defining x = [x1, x2, x3]T , we can read off the rows of the RREF as x1 = 0,
x2 = 0, x3 = 0. Therefore the only solution to the homogeneous equation is the
trivial solution x = 0. Hence, ker(B) = span(0) = 0.
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B.12 Studio 4.2 solutions

(0) Let u,v,w ∈ R2 and c be a scalar.
(a) Show that u ◦ v = v ◦ u.

This is pretty easy to show when the vectors are in R2.

u ◦ v = u1v1 + u2v2

v ◦ u = v1u1 + v2u2.

Since all the quantities are real numbers, multiplication commutes and so the
two lines are equal.

Perhaps the easiest way to show this identity when the vectors live in Rn is
to note that u ◦ v = uTv = k = kT = (uTv)T = vTu = v ◦ u, where k is a real
number.

(b) Show that (u + v) ◦w = u ◦w + v ◦w.

(u + v) ◦w =

([
u1

u2

]
+

[
v1

v2

])
◦

[
w1

w2

]

=

[
u1 + v1

u2 + v2

]
◦

[
w1

w2

]
= (u1 + v1)w1 + (u2 + v2)w2

= u1w1 + u2w2 + v1w1 + v2w2

=

[
u1

u2

]
◦

[
w1

w2

]
+

[
v1

v2

]
◦

[
w1

w2

]
= u ◦w + v ◦w.

(c) Show that (cu) ◦ v = c(u ◦ v).(
c

[
u1

u2

])
◦

[
v1

v2

]
=

[
cu1

cu2

]
◦

[
v1

v2

]
= cu1v1 + cu2v2

= c(u1v1 + u2v2)

= c(u ◦ v).

(1) Define

u =


−3

7

4

0

 v =


1

−8

15

−7

 .
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(a) Calculate ‖u‖.

>> norm([-3;7;4;0])

ans =

8.6023

(b) Calculate ‖v‖.

>> norm([1;-8;15;-7])

ans =

18.4120

(c) Calculate ‖u− v‖.

>> norm([-3;7;4;0]-[1;-8;15;-7])

ans =

20.2731

(d) Show that ‖u− v‖ = ‖v − u‖.

>> norm(-[-3;7;4;0]+[1;-8;15;-7])

ans =

20.2731

(e) Show that ‖u + v‖2 = ‖u‖2 + ‖v‖2 if u and v are orthogonal. (This is
equivalent to the Pythagorean theorem in higher dimensions.)

‖u + v‖2 = (u + v) ◦ (u + v)

= u ◦ u + 2u ◦ v + v ◦ v.

If u and v are orthogonal, then u ◦v = 0, and so we can simplify the preceding
statement.

‖u + v‖2 = u ◦ u + v ◦ v

= ‖u‖2 + ‖v‖2.

(2) Let W be a subspace of Rn and let W⊥ be the orthogonal complement
of W . Show that the only vector in both W and W⊥ is the zero vector.
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Suppose that x is in both W and W⊥. Then x is orthogonal to itself.
Then by definition, x ◦ x = 0. But by the definition of the inner product,
x ◦ x = x21 + x22 + . . . + x2n. So x ◦ x = 0 if and only if each one of the xi is 0.
This implies that x is the zero vector.

(3) Let W be a subspace of Rn and let W⊥ be the orthogonal complement
of W . Show that (W⊥)⊥ = W .

Every vector in W⊥ is orthogonal to every vector in W . Similarly, every
vector in (W⊥)⊥ is orthogonal to every vector in W⊥. But these are exactly
the vectors in W by definition.

(4) Define A as found in studio12.mat. Find a collection of vectors that
spans im(A)⊥.

We first need to remember that im(A)⊥ = ker(AT ). Then any vector x
in im(A)⊥ is a solution to the homogeneous equation ATx = 0. We can find
solutions to this equation by row reducing the coefficient matrix AT .

>> load studio12.mat

>> rref(A’)

ans =

1 0 5 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

Defining x = [x1, x2, x3, x4, x5]T , the first line reads, x1 = −5x3, the second line
reads x2 = −x3, the third line reads x4 = 0, the fourth line reads x5 = 0 and
the fifth line reads 0 = 0. Substituting gives an expression for x as the linear
combination of a single vector.

x =


x1

x2

x3

x4

x5

 =


−5x3

−x3
0

0

x5

 = x3


−5

−1

0

0

0


Since x3 is free, we conclude that im(A)⊥ = ker(AT ) = span([−5,−1, 0, 0, 0]T ).
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B.13 Studio 4.3 solutions

(0) Define

u =


1

2

3

4

 , v =


2

6

7

−1

 , w =


−3

2

−4

−5

 , y =


1

1

1

1

 .
(a) Find the projection of y onto U = span(u) using both the explicit

calculation at the beginning of the section, and the more general method used
to complete the regression examples. Confirm that these approaches yield the
same result.

Using the technology developed at the beginning of the section, we have

projUy =
y ◦ u

u ◦ u
u.

We can use Matlab to do the more basic computations here.

>> u = [1;2;3;4];

>> y = [1;1;1;1];

>> y’*u

ans =

10

>> u’*u

ans =

30

So projUy = (1/3)u.
Using the later definition, we have x̂ = (ATA)−1ATy, where A = [u].

>> A = [1;2;3;4];

>> xHat = inv(A’*A)*A’*y

xHat =

0.3333

So ŷ = Ax̂ = 0.33u. Up to numerical precision, the answers are identical.

(b) Find the projection of y onto V = span(u,v). Is the coefficient of u in
this projection the same as the coefficient of u in the previous part? We can

use the formula x̂ = (ATA)−1ATy to find the coefficients of the projection.
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>> A = [1 2 3 4; 2 6 7 -1]’

A =

1 2

2 6

3 7

4 -1

>> xHat = inv(A’*A)*A’*y

xHat =

0.2680

0.0633

So ŷ = Ax̂ = 0.268u+0.0633v. Notice that the coefficient of u in this projection
is not the same as the coefficient of u in the projection in the previous part.

(c) Find the projection of y onto W = span(u,v,w).

We can use the formula x̂ = (ATA)−1ATy to find the coefficients of the
projection.

>> A = [1 2 3 4; 2 6 7 -1; -3 2 -4 -5]’

A =

1 2 -3

2 6 2

3 7 -4

4 -1 -5

>> xHat = inv(A’*A)*A’*y

xHat =

0.2235

0.0721

-0.0342

So ŷ = Ax̂ = 0.2235u + 0.0721v − 0.0342w. Notice that the coefficient of u in
this projection is not the same as the coefficient of u in the projection in the
previous part.

(d) Find a matrix A such that im(A) = W . Confirm that y− ŷ is a member
of W⊥ = kerAT .
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The desired matrix is

A =


1 2 −3

2 6 2

3 7 −4

4 −1 −5

 .
We can confirm that y − ŷ is orthogonal to W using Matlab.

>> A’*(A*xHat - y)

ans =

1.0e-014 *

-0.0333

0.1887

-0.0777

Notice that while the values here are not exactly zero, they are very, very small.
We say that up to numerical precision, they are zero.
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(1) Suppose we have (x, y) data points (-2,1), (-1,4), (0,3), (1,7), (2,4).
(a) Find the linear model that minimizes the sum of squared errors. Calcu-

lated the sum of squared errors by finding the norm ‖y − ŷ‖.

Define ŷ = β0 + β1x. We can write a matrix equation describing the model.
1 −2

1 −1

1 0

1 1

1 2


[
β0

β1

]
=


1

4

3

7

4


Aβ = y.

We can use the least-squares formula β = (ATA)−1ATy to solve for the unknown
coefficients.

>> A = [1 1 1 1 1; -2 -1 0 1 2]’

A =

1 -2

1 -1

1 0

1 1

1 2

>> betaHat = inv(A’*A)*A’*[1;4;3;7;4]

ans =

3.8000

0.9000

So ŷ = 3.8 + 0.9x is the unique linear model that minimizes the sum of squared
errors between its predictions and the given observations.

The sum of squared errors is the square of the distance between the original
vector and the projection. Mathematically, we want to compute ‖ŷ − y‖ =

‖Aβ̂ − y‖.
>> norm([1;4;3;7;4] - A*betaHat)^2

ans =

10.7000

(b) Find the quadratic model that minimizes the sum of squared errors.
Calculated the sum of squared errors. Is it larger or smaller than the SSE in
the previous part?
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EDU>> A = [1 1 1 1 1; -2 -1 0 1 2; (-2)^2 (-1)^2 0^2 1^2 2^2]’

A =

1 -2 4

1 -1 1

1 0 0

1 1 1

1 2 4

EDU>> betaHat = inv(A’*A)*A’*[1;4;3;7;4]

betaHat =

4.8000

0.9000

-0.5000

EDU>> norm([1;4;3;7;4] - A*betaHat)^2

ans =

7.2000

So ŷ = 4.8 + 0.9x − 0.5x2 is the unique quadratic function that minimizes the
sum of squared errors between its predictions and the observations. The error
here is lower than the error in the previous example. This implies that the
quadratic model is a better fit for the data than the linear model.

(c) Find the cubic model that minimizes the sum of squared errors. Cal-
culated the sum of squared errors. Is it larger or smaller than the SSE in the
previous part?

EDU>> A = [1 1 1 1 1; -2 -1 0 1 2; (-2)^2 (-1)^2 0^2 1^2 2^2; (-2)^3 (-1)^3 0 1 2^3]’

A =

1 -2 4 -8

1 -1 1 -1

1 0 0 0

1 1 1 1

1 2 4 8

EDU>> betaHat = inv(A’*A)*A’*[1;4;3;7;4]

betaHat =
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4.8000

1.7500

-0.5000

-0.2500

EDU>> norm([1;4;3;7;4] - A*betaHat)^2

ans =

6.3000

So ŷ = 4.8+1.75−0.52−0.25x3 is the unique cubic function that minimizes the
sum of squared errors between its predictions and the observations.The error
here is lower than the error in the previous example. This implies that the cubic
model is a better fit for the data than the quadratic model.

(d) Find the quartic (fourth order) model that minimizes the sum of squared
errors. Calculated the sum of squared errors. What does your SSE mean in this
case?

EDU>> A = [1 1 1 1 1; -2 -1 0 1 2; (-2)^2 (-1)^2 0^2 1^2 2^2; ...

(-2)^3 (-1)^3 0 1 2^3; (-2)^4 (-1)^4 0 1 2^4]’

A =

1 -2 4 -8 16

1 -1 1 -1 1

1 0 0 0 0

1 1 1 1 1

1 2 4 8 16

EDU>> betaHat = inv(A’*A)*A’*[1;4;3;7;4]

betaHat =

3.0000

1.7500

3.3750

-0.2500

-0.8750

EDU>> norm([1;4;3;7;4] - A*betaHat)^2

ans =

6.3582e-28
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So ŷ = 3 + 1.75x + 3.375x2 − 0.25x3 − 0.875x4 is the unique quadric function
that minimizes the sum of squared errors between its predictions and the ob-
servations.The error in this case is 0 up to round off error. This means that the
function ŷ passes directly through all of the observed data.

(2) Sometimes a single independent variable isn’t enough to create a de-
pendable model of a given system. For an example, imagine that you run a
small ice cream shop on the coast of Maine. There are two main drivers for
your sales: daily temperature and median customer income. Suppose we have a
model with two independent variables u, representing the average daily temper-
ature in July in your town, and v, representing the median income of customers
who purchased from you in July. You’ve been collecting data over several years.
The results can be seen in Table B.1

Year Total Sales Average Temp. Median Income

2009 27.93 86.92 30.11

2010 28.29 88.51 31.48

2011 29.70 88.01 32.03

2012 31.09 87.05 33.34

2013 33.11 89.15 34.45

Table B.1: Data collected for the total sales (thousands of dollars), average
temperate (degrees Fahrenheit), and median household income (thousands of
dollars) for July of the indicated year

(a) Find the best multlinear model s(u, v) = β0 + β1u + β2v for the given
data?

The matrix equation for this situation is[
1 u v

]
β = s

Aβ = s.

Then we can try to directly solve for the coefficients β using the least-squares
formula β = (ATA)−1AT s.,

A =

1.0000 86.9200 30.1100

1.0000 88.5100 31.4800

1.0000 88.0100 32.0300

1.0000 87.0500 33.3400

1.0000 89.1500 34.4500

>> s = [27.93; 28.29; 29.70; 31.09; 33.11];

>> betaHta = inv(A’*A)*A’*s
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betaHta =

-0.5805

-0.1169

1.2664

This implies that s(u, v) = −0.5805−0.1169u+1.2664v is the unique multilinear
model that minimizes the sum of squared errors between its predictions and the
observations.

(b) We could also allow for the variables u and v to interact multiplicatively
through the model s(u, v) = β0 +β1u+β2v+β3uv. Find the best model of this
form for the given data.

Entering the matrix all again would be a pain. Let’s assume we have A in
Matlab as defined above. We can grab a particular column of A, for instance,
the third.

>> A(:,3)

ans =

30.1100

31.4800

32.0300

33.3400

34.4500

Then uv is equivalent to A(:,2).*A(:,3) (Remember that the dot means to
do the multiplication component-wise. Without the dot, Matlab will try to do
matrix multiplication.)

We can define a new matrix A that is the coefficient matrix in this example.

>> A = [A A(:,2).*A(:,3)]

A =

1.0e+003 *

0.0010 0.0869 0.0301 2.6172

0.0010 0.0885 0.0315 2.7863

0.0010 0.0880 0.0320 2.8190

0.0010 0.0871 0.0333 2.9022

0.0010 0.0892 0.0345 3.0712

We put the old A next to the new column that represents uv and the assign this
new matrix back to the variable named A. Notice that all entries in the matrix
are multiplied by 1e3 = 1000.

We can solve for the unknown coefficients in the usual way.
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>> betaHta = inv(A’*A)*A’*s

betaHta =

922.9760

-10.6391

-26.8579

0.3204

So s(u, v) = −922.9760−10.6391u−26.8579v+0.3204uv is the unique model of
the given form that minimizes the sum of squared errors between its predictions
and the observations. Notice how much introducing the term uv changed the
result in this part from the result in the last part.

(c) An even more general model might be s(u, v) = β0 +β1u+β2v+β3uv+
β4u

2 + β5v
2. Find the best model of this form for the given data.

We can use a similar shortcut to the one used in the last problem to create
the matrix A. Let’s assume we have defined A as in the last problem. Then
u2 corresponds to A(:,2).*A(:,2) = A(:,2).^2. Notice that even when you
want to square every component in a vector, you need to use .^. Otherwise,
Matlab will try to do matrix multiplication. So our new matrix is

>> A = [A A(:,2).^2 A(:,3).^2]

A =

1.0e+003 *

0.0010 0.0869 0.0301 2.6172 7.5551 0.9066

0.0010 0.0885 0.0315 2.7863 7.8340 0.9910

0.0010 0.0880 0.0320 2.8190 7.7458 1.0259

0.0010 0.0871 0.0333 2.9022 7.5777 1.1116

0.0010 0.0892 0.0345 3.0712 7.9477 1.1868

We can try to solve for the unknown coefficients in the usual way.

>> betaHta = inv(A’*A)*A’*s

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.940349e-024.

betaHta =

1.0e+003 *

1.8093

-0.0249

-0.0406
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0.0007

0.0000

-0.0002

This error matrix makes me nervous. Let’s check to make sure that the inverse
(ATA)−1 actually exists.

>> inv(A’*A)

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.940349e-024.

ans =

1.0e+015 *

1.1094 -0.0253 0.0003 0.0000 0.0001 -0.0001

-0.0253 0.0006 -0.0000 -0.0000 -0.0000 0.0000

0.0003 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.0001 -0.0000 0.0000 0.0000 0.0000 -0.0000

-0.0001 0.0000 -0.0000 -0.0000 -0.0000 0.0000

Here too Matlab is telling us something is wrong. What’s going on here? Let’s
take a step back and remember what we’re trying to do. We want a solution
ŝ = Aβ̂ that is closest to the observed sales data s. But this is only necessary
if s is not in the image of A to begin with. Note that we have 5 equations and
6 unknowns in this problem. So there are likely infinitely many solutions β for
every s. Let’s check by RREFing the augmented matrix.

>> rref([A s])

ans =

1.0e+004 *

0.0001 0 0 0 0 1.9856 -0.3068

0 0.0001 0 0 0 -0.0453 0.0086

0 0 0.0001 0 0 0.0005 -0.0042

0 0 0 0.0001 0 0.0001 0.0000

0 0 0 0 0.0001 0.0002 -0.0001

Notice that the coefficient β5 is free. So there are in fact infinitely many models
of the form s(u, v) = β0 + β1u+ β2v+ β3uv+ β4u

2 + β5v
2 that perfectly fit the

data!
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(3) One of the tools used in data mining is logistic regression, which takes a
collection of observations about certain probabilities and attempts to construct
the underlying cumulative density function. The logistic function in this case is

π(x) =
eβ0+β1x

eβ0+β1x + 1
,

where β0 and β1 are the parameters to be estimated. Notice that π(x) is between
0 and 1 for every x. Moreover, we see that π(x) → 1 as x → ∞ and π(x) → 0
as x→ −∞. So π(x) seems like a pretty good candidate for a CDF. Then π(x)
is the probability that some random variable X has value less than or equal to
x.

(a) For an example, let’s turn our attention to the grade distribution in a
typical core foundation class. The median grade should be a B-, which equations
to a 2.6 grade points. In my classes, roughly 15% of students receive an A- or
better, which equates to 3.6 grade points or higher. Roughly 5% of students
fail the course, which equates to 1 grade point or lower. Find the best logistic
model for the underlying cumulative distribution function.

Our (x, π(x), where x is a grade point and π(x) is the percentage of students
that make less than that grade point, data points here are (2.6, 0.5), (3.6, 0.85)
and (1, 0.05). Recall that we can turn the logistic function into a linear combi-
nation of the unknown coefficients.

π(x) =
eβ0+β1x

eβ0+β1x + 1

=
1

1 + e−β0−β1x

π(x) + π(x)e−β0−β1x = 1

e−β0−β1x =
1− π(x)

π(x)

β0 + β1x = ln

(
π(x)

1− π(x)

)
.

Then the linear system associated with this model and the given data points
are 1 2.6

1 3.6

1 1

[β0
β1

]
=


ln
(

0.5
1−0.5

)
ln
(

0.85
1−0.85

)
ln
(

0.05
1−0.05

)


Aβ = y.

We can use Matlab to attempt to solve directly for the unknown coefficients
using β̂ = (ATA)−1ATy.

>> A = [1 1 1; 2.6 3.6 1]’
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A =

1.0000 2.6000

1.0000 3.6000

1.0000 1.0000

>> y = [log(0.5/(1-0.5)) log(0.85/(1-0.85)) log(0.05/(1-0.05))]’

y =

0

1.7346

-2.9444

>> betaHat = inv(A’*A)*A’*y

betaHat =

-4.7315

1.8034

(b) According to your model, what percentage of students earn a C or
better?

A C is 2 grade points. We can substitute x = 2 in order to determine the
probability.

π(2) =
e−4.7315+1.8034(2)

e−4.7315+1.8034(2) + 1

≈ 0.245

So approximately 25% of the class will make less than a C.

(c) According to your model, how many grade points should a student earn
to be in the top 25% of the class?

This implies that π(x) = 0.75. We can substitute into our equation and
solve for the desired grad point x.

−4.7315 + 1.8034x = ln

(
0.75

1− 0.75

)

x =
ln
(

0.75
1−0.75

)
+ 4.7315

1.8034
≈ 3.23

So a student must earn roughly a B+ to be in the top 25% of the class.
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B.14 Studio 5.1 solutions

(0) Is the collection {[
1

1

]
,

[
1

2

]
,

[
2

3

]}

a basis for R2?

No, the vectors are not linearly independent. We can confirm this by iden-
tifying a free variable in the RREF of the matrix whose columns are the basis
vectors.

EDU>> A = [1 1 2; 1 2 3];

EDU>> rref(A)

ans =

1 0 1

0 1 1

(a) Is the collection 


1

1

1

1

 ,


1

2

3

4

 ,


0

0

1

0

 ,


1

0

0

1




a basis for R4?

Yes, we can confirm using the RREF of the matrix whose columns are the
basis vectors that there are no inconsistencies (so the vectors span R4) and there
are no free variables (so the vectors are linearly independent).

EDU>> B = [1 1 1 1; 1 2 3 4; 0 0 1 0; 1 0 0 1]’

B =

1 1 0 1

1 2 0 0

1 3 1 0

1 4 0 1

EDU>> rref(B)

ans =
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

(1) Define A and B by

A =

1 6 16 −40

2 5 11 −31

3 4 6 −22

 , B =

1 1 1 1 0

0 1 1 0 0

0 0 1 −1 −2

 .
(a) Find a basis for the kernel of A.

We can solve the homogeneous equation Ax = 0 by row reducing the coeffi-
cient matrix A.

EDU>> A = [1 6 16 -40; 2 5 11 -31; 3 4 6 -22];

EDU>> rref(A)

ans =

1 0 -2 2

0 1 3 -7

0 0 0 0

Defining x = [x1, x2, x3, x4]T , the first line implies x1 = 2x3 − 2x4, and the
second line implies x2 = −3x3 + 7x4.

x =


x1

x2

x3

x4

 =


2x3 − 2x4

−3x3 + 7x4

x3

x4

 = x3


2

−3

1

0

+ x4


−2

7

0

1

 .
Since x3 and x4 are free, we can conclude that

ker(A) = span




2

−3

1

0

 ,

−2

7

0

1


 ,

and so

Bker =




2

−3

1

0

 ,

−2

7

0

1


 .
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Notice that the kernel is a subspace of R4 and not R3 because the kernel is a
subspace of the domain, not the range.

(b) Find a basis for the image of A.

A basis of the image of A is simply the pivot columns of A. Hence,

Bim =


1

2

3

 ,
6

5

4


 .

Notice that the image is a subspace of R3 and not R4 because the image is
a subspace of the range, not the domain.

(c) What are the dimensions of the kernel and image of A?

Both the image and the kernel are 2-dimensional.

(d) Find a basis for the kernel of B.

We can solve the homogeneous equation Bx = 0 by row reducing the coef-
ficient matrix B.

EDU>> B = [1 1 1 1 0; 0 1 1 0 0; 0 0 1 -1 -2]

B =

1 1 1 1 0

0 1 1 0 0

0 0 1 -1 -2

EDU>> rref(B)

ans =

1 0 0 1 0

0 1 0 1 2

0 0 1 -1 -2

Defining x = [x1, x2, x3, x4, x5]T , the first line implies x1 = −x4, and the second
line implies x2 = −x4 − 2x5, and the third line implies x3 = x4 + 2x5.

x =


x1

x2

x3

x4

x5

 =


−x4

−x4 − 2x5

x4 + 2x5

x4

x5

 = x4


−1

−1

1

1

0

+ x5


0

−2

2

0

1

 .
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Since x3 and x4 are free, we can conclude that

ker(A) = span




−1

−1

1

1

0

 ,


0

−2

2

0

1



 ,

and so

Bker =




−1

−1

1

1

0

 ,


0

−2

2

0

1




.

Notice that the kernel is a subspace of R5 and not R3 because the kernel is a
subspace of the domain, not the range.

(e) Find a basis for the image of B.

A basis of the image of B is simply the pivot columns of B. Hence,

Bim =


1

0

0

 ,
1

1

0

 ,
1

1

1


 .

Notice that the image is a subspace of R3 and not R5 because the image is
a subspace of the range, not the domain.

(f) What are the dimensions of the kernel and image of B?

The kernel of B is 2-dimensional, while the image of B is 3-dimensional.

(2) Let B = {v1,v2, . . . ,vk} be a set of vectors in Rn.
(a) Argue that if k > n, then B cannot be a basis for Rn.

If k > n, then there are more vectors than there are components in each
vector. If we stack the vectors of B up as the columns of a matrix A, we could
say that A has more columns than it has rows. The number of pivots in a matrix
is at most its number of rows and at most its number of columns. (Here the
row restriction is tighter.) We can combine the last two ideas in order to claim
that some column of A does not contain a pivot and is therefore a free variable.
A free variable then implies that the columns of A, that is, the vectors of B are
not linearly independent.

(b) Argue that if k < n, then B cannot be a basis for Rn.

If k < n, then there are more components in each vector than there are
vectors. If we stack the vectors of B up as the columns of a matrix A, we could
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say that A has more rows than it has columns. The number of pivots in a matrix
is at most its number of rows and at most its number of columns. (Here the
column restriction is tighter.) We can combine the last two ideas in order to
claim that some row of A does not contain a pivot. Then there is some b for
which the matrix equation Ax = b does not have a solution, that is, the vectors
of B do not span Rn.

(c) Conclude that any basis of Rn must have exactly n elements. (There’s
nothing to do here other than recognize that the previous two parts directly
show this fact.)

(3) The standard basis of Rn is the collection {e1, e2, . . . , en}, where ei has
a 1 in component i and zero in all other components. We can represent a vector
x as a natural linear combination of these basis elements. For instance, if x is
in R2, we have

x =

[
x1

x2

]

= x1

[
1

0

]
+ x2

[
0

1

]
= x1e1 + x2e2.

We can extend the idea of the standard basis to other vector spaces.
(a) Let H be the vector space of 2× 2 matrices. Come up with a best guess

as to the standard basis of H. Show that the collection of elements that you
propose is in fact a basis.

In the standard basis for Rn we have a basis that might seem natural be-
cause the weights of the basis vectors in description of a vector x are just the
components of x itself.

Imagine we have a general matrix A.

A =

[
a1 a2

a3 a4

]

= a1

[
1 0

0 0

]
+ a2

[
0 1

0 0

]
+ a3

[
0 0

1 0

]
+ a4

[
0 0

0 1

]
.

This seems like the equivalent to the standard basis in Rn.
Let’s define

B2×2 =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}
.

We have shown above that these elements span the vector space of 2×2, because
an arbitrary 2 × 2 matrix A can be written as a linear combination of the ele-
ments. We can also verify (either by inspection or through a few computations)
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that the elements are linearly independent, because no one element is a linear
combination of the others.

(b) Let Pn be the vector space of polynomials of degree at most n. Come
up with a best guess as to the standard basis of Pn. Show that the collection
of elements that you propose is in fact a basis.

An arbitrary element in Pn has the form p(x) = a0 +a1x+a2x
2 + . . .+anx

n.
Again, a “natural” way to break this along the components. Define

BPn
=
{

1, x, x2, . . . , xn
}
.

We have shown above that these elements span the vector space Pn, because
an arbitrary polynomial p(x) of degree at most n can be written as a linear
combination of the elements. We can also verify (either by inspection or through
a few computations) that the elements are linearly independent, because no one
element is a linear combination of the others.

(4) Recall that a n × n matrix A is symmetric if A(i, j) = A(j, i) for all
1 ≤ i, j ≤ n.

(a) Find a basis for the vector space of 2× 2 symmetric matrices.
We want a collection B of 2×2 symmetric matrices such that any 2×2 matrix

A can be written as a linear combination of elements in B. Any symmetric 2×2
matrix has the form

A =

[
a1 a2

a2 a3

]
.

We can separate A into a linear combination of symmetric matrices

A =

[
a1 a2

a2 a3

]

= a1

[
1 0

0 0

]
+ a2

[
0 1

1 0

]
+ a3

[
0 0

0 1

]
.

Let’s propose a basis according to these elements we’ve found.

B =

{[
1 0

0 0

]
,

[
0 1

1 0

]
,

[
0 0

0 1

]}
.

First, the elements of B are clearly in the space, that is, they are symmetric.
The elements in B certainly span the space in question, exactly because we
have written an arbitrary matrix A in the space as a linear combination of
them. They’re also linearly independent by inspection. We conclude that B is
indeed a basis of the space. Notice that this implies that the space of 2 × 2
symmetric matrices is 3-dimensional.

(b) Find a basis for the vector space of 3× 3 symmetric matrices. We want
a collection B of 3× 3 symmetric matrices such that any 3× 3 matrix A can be
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written as a linear combination of elements in B. Any symmetric 3× 3 matrix
has the form

A =

a1 a2 a3

a2 a4 a5

a3 a5 a6


We can break this matrix up exactly as we did above and subsequently identify
the constituent basis elements.

B =


1 0 0

0 0 0

0 0 0

 ,
0 1 0

1 0 0

0 0 0

 ,
0 0 1

0 0 0

1 0 0

 ,
0 0 0

0 1 0

0 0 0

 ,
0 0 0

0 0 1

0 1 0

 ,
0 0 0

0 0 0

0 0 1




First, the elements of B are clearly in the space, that is, they are symmetric.
The elements in B certainly span the space in question, exactly because we
have written an arbitrary matrix A in the space as a linear combination of
them. They’re also linearly independent by inspection. We conclude that B is
indeed a basis of the space. Notice that this implies that the space of 3 × 3
symmetric matrices is 6-dimensional.

(c) How would your previous answers generalize to the vector space of n×n
matrices?

The process we’ve followed above easily generalizes to n × n, though it is
harder to think about a succinct way to describe the basis vectors. There are n
basis elements that come from entries along the main diagonal and (n2 − n)/2
basis elements that off from the off-diagonal pairs. This gives a total of (n2+n)/2
basis elements. We conclude that the space of symmetric n × n matrices has
dimension (n2 + n)/2.
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B.15 Studio 5.2 solutions

(0) Define

B =




1

1

1

1

 ,


1

2

3

4

 ,


0

0

1

0

 ,


1

0

0

1


 , C =




1

0

0

0

 ,


1

1

0

0

 ,


1

1

1

0

 ,


1

1

1

1


 .

(a) Verify that B and C are bases for R4.

Perhaps the easiest way to verify that these collections of vectors are bases
of R4 is to row reduce the B that has columns take from C, and similar for a
matrix C.

EDU>> B = [1 1 0 1; 1 2 0 0; 1 3 1 0; 1 4 0 1]

EDU>> rref(B)

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

EDU>> C = [1 1 1 1; 0 1 1 1; 0 0 1 1; 0 0 0 1];

EDU>> rref(C)

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In both cases the RREF is the identity matrix. Since there is a pivot in every
row, the vectors of B span R4. Since there is a pivot in every column, the vectors
of B are linearly independent. Thus B is a basis of R4. Equivalent statements
hold for C.

(b) What are the B-coordinates of x = [5, 6, 7, 8]T ?

First note that the change of coordinates matrix PE←B is just the matrix B
we defined above. For shorthand, we’ll just refer to the change of basis as B in
what follows.

We’re looking for a solution [x]B to B[x]B = x. Since the columns of B form
a basis of R4, the matrix inverse B−1 exists. Therefore [x]B = B−1x. Matlab
will do the actual computation for us.
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>> Bcoords = inv(B)*[5;6;7;8]

Bcoords =

4.0000

1.0000

-0.0000

0.0000

So the B-coordinates of x are [x]B = [4,−1, 0, 0]T .

(c) Construct a matrix that changes coordinates from the standard basis E
of R4 to the basis B.

This matrix is in fact just the inverse B−1 we constructed in the last part,
since [x]B = B−1x = B−1[x]E .

(d) What are the C-coordinates of x = [5, 6, 7, 8]T ?
First note that the change of coordinates matrix PE←C is just the matrix C

we defined above. For shorthand, we’ll just refer to the change of basis as C in
what follows.

We’re looking for a solution [x]C to C[x]C = x. Since the columns of C form
a basis of R4, the matrix inverse C−1 exists. Therefore [x]C = C−1x. Matlab
will do the actual computation for us.

EDU>> Ccoords = inv(C)*[5;6;7;8]

ans =

-1

-1

-1

8

So the C-coordinates of x are [x]C = [−1,−1,−1, 8]T .

(e) Construct a matrix that changes coordinates from the standard basis E
of R4 to the basis C.

This matrix is in fact just the inverse C−1 we constructed in the last part,
since [x]C = C−1x = C−1[x]E .

(f) Construct a matrix that changes coordinates from the basis B to basis
C.

Recall that C[x]C = x = B[x]B. Rearranging gives us a convenient expres-
sion.

[x]C = C−1B[x]B.

So the matrix C−1B is the one we’re looking for. Note that in the expanded
change of coordinate notation, we have C−1B = P−1E←CPE←B = PC←EPE←B =
PC←B.
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Matlab gives us a numerical expression for C−1B.

>> inv(C)*B

ans =

0 -1 0 1

0 -1 -1 0

0 -1 1 -1

1 4 0 1

(g) Verify that the matrix you constructed in the previous subproblem
coverts the B-coordinates of x = [5, 6, 7, 8]T to the C-coordinates of x = [5, 6, 7, 8]T .

With x = [5, 6, 7, 8]T , we’ve shown [x]B = [4, 1, 0, 0]T and [x]C = [−1,−1,−1, 8]T .
Matlab confirms that the change of coordinate matrix C−1B does indeed convert
B-coordinates into C-coordinates.

>> inv(C)*B*[4;1;0;0]

ans =

-1

-1

-1

8

(h) Construct a matrix that changes coordinates from the basis C to basis B.
Recall that C[x]C = x = B[x]B. Rearranging gives us a convenient expression.

[x]B = B−1C[x]C .

So the matrix B−1C is the one we’re looking for. Note that in the expanded
change of coordinate notation, we have B−1C = P−1E←BPE←C = PB←EPE←C =
PB←C .

(i) Verify that the matrix you constructed in the previous subproblem coverts
the C-coordinates of x = [5, 6, 7, 8]T to the B-coordinates of x = [5, 6, 7, 8]T .

With x = [5, 6, 7, 8]T , we’ve shown [x]B = [4, 1, 0, 0]T and [x]C = [−1,−1,−1, 8]T .
Matlab confirms that the change of coordinate matrix B−1C does indeed convert
C-coordinates into B-coordinates.

>> inv(B)*C*[-1; -1; -1; 8]

ans =

4.0000

1.0000

-0.0000

0.0000
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(1) We’ll show that the mapping of x to its coordinates in a given basis B
is a linear transformation. Any linear transformation f satisfies two properties:
f(x+ y) = f(x) + f(y) and f(cx) = cf(x) for any scalar c.

(a) Let u and v be two vectors in a vector space V with basis B = {b1,b2, . . . ,bn}.
Show that [u + v]B = [u]B + [v]B.

Since B is a basis of V , we can write both u and v in terms of the basis
vectors of B.

u = u1b1 + u2b2 + . . .+ unbn

v = v1b1 + v2b2 + . . .+ vnbn.

Using these expressions, we can write the sum of the B-coordinates of the two
vectors.

[u]B + [v]B =


u1

u2
...

un

+


v1

v2
...

vn



=


u1 + v1

u2 + v2
...

un + vn

 .
We can also write the sum of the vectors.

u + v = (u1b1 + u2b2 + . . .+ unbn) + (v1b1 + v2b2 + . . .+ vnbn)

= (u1 + v1)b1 + (u2 + v2)b2 + . . .+ (un + vn)bn.

But then notice that the B-coordinates of the sum of the vectors matches the
sum of the B-coordinates of the vectors.

[u + v]B =


u1 + v1

u2 + v2
...

un + vn

 .

(b) Let u a vector in a vector space V with basis B. Show that [cu]B = c[u]B.

Since B is a basis of V , we can write u in terms of the basis vectors of B.

u = u1b1 + u2b2 + . . .+ unbn.

Note that multiplying by a constant c just distributes to each of the basis terms.

cu = c(u1b1 + u2b2 + . . .+ unbn)

= cu1b1 + cu2b2 + . . .+ cunbn.

This directly implies that [cu]B = c[u]B.
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(2) Define

B =


1

1

1

 ,
1

2

3

 ,
0

0

1


 , C =


1

0

0

 ,
1

1

0

 ,
1

1

1


 .

Label the vectors of B in order as b1, b2 and b3, respectively. Similarly, label
the vectors of C in order as c1, c2 and c3, respectively. We can think about the
change of coordinates matrix PC←B in a different way than the on presented in
the text. In this problem, we’ll walk through that process. Define x = [4, 5, 6]T .

(a) Write x as a linear combination of the vectors b1, b2 and b3.

Define the matrix B to have the vectors from B as its columns. Then B-
coordinates of x are [x]B = B−1x. We can use Matlab to compute these coor-
dinates.

EDU>> B = [1 1 0; 1 2 0; 1 3 1];

EDU>> Bcoords = inv(B)*[4;5;6]

Bcoords =

3

1

0

This implies that x = 3b1 + b2.

(b) Write each vector in B as a linear combination of the vectors c1, c2, and
c3.

Define the matrix C to have the vectors from C as its columns. Then C-
coordinates of b1 are [b1]C = C−1b1. We can use Matlab to compute these
coordinates.

EDU>> C = [1 1 1; 0 1 1; 0 0 1];

EDU>> b1_C = inv(C) * [1;1;1]

b1_C =

0

0

1

Notice that this is an easy one because b1 = c3, so [b1]C = [0, 0, 1]T .
We can follow a similar procedure for the other two.

EDU>> b2_C = inv(C) * [1;2;3]

b2_C =
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-1

-1

3

EDU>> b3_C = inv(C) * [0;0;1]

b3_C =

0

-1

1

We conclude that b1 = c3, b2 = −c1 − c2 + 3c3, b3 = −c2 + c3.

(c) Substitute your expressions for b1, b2 and b3 in terms of c1, c2, and c3
into your expression for x in terms of b1, b2 and b3. (You should now have an
expression for x in terms of c1, c2, and c3.) Regroup like terms and confirm
that the C-coordinates of x are the same here as you calculated above.

Earlier we found that x = 3b1 + b2, so that the B-coordinates of x are
[x]B = [3, 1, 0]T . Then substituting in our new expression gives a formulation
for x in terms of the vectors of B.

x = 3b1 + b2

= 3(c3) + (−c1 − c2 + 3c3)

= −c1 − c2 + 6c3.

We can conclude that the C-coordinates of x are [x]C = [−1− 1, 6].
(d) Take a second to note that we’ve changed from B-coordinates to C-

coordinates by writing each vector of B in terms of a linear combination of the
vectors in C. (There’s nothing to do here but make this realization.)

Noted.

(e) Confirm that numerically

PC←B =
[

[b1]C [b2]C [b3]C

]
.

Since C[x]C = x = B[x]B, we have [x]C = C−1B[x]B, and so PC←B = C−1B.
Matlab gives a numerical expression for the change of coordinates matrix.

EDU>> inv(C)*B

ans =

0 -1 0

0 -1 -1

1 3 1
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Notice that the first column matches our computation of [b1]C , the second
columns matches our computation of [b2]C , and the third column matches our
computation of [b3]C .

(f) Argue why the identity in the preceding part must hold, and generalize
this idea. (Hint: use the fact that coordinate mapping is a linear transforma-
tion.)

We’ll argue that [x]C =
[

[b1]C [b2]C [b3]C

]
[x]B. Let [x]B = [b1, b2, b3]T ,

so that x = b1b1 + b2b2 + b3b3. Then we can use the fact that coordinate
mapping is a linear transformation (which you showed in the previous problem)
to derive the desired result.

[x]C = [b1b1 + b2b2 + b3b3]C

= [b1b1]C + [b2b2]C + [b3b3]C

= b1[b1]C + b2[b2]C + b3[b3]C

=
[

[b1]C [b2]C [b3]C

]b1b2
b3


=
[

[b1]C [b2]C [b3]C

]
[x]B

This same approach generalizes to any pair of bases for Rn.
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B.16 Studio 5.3 solutions

(0) Define matrices A,B and E as found in studio16.mat. Determine whether
each matrix is diagonalizable, orthogonally diagonalizable or neither. If diago-
nalizable, confirm that the eigenvectors are linearly independent. If orthogonally
diagonalizable, confirm that the eigenvectors are orthogonal.

An n × n matrix A is diagonalizable if and only if its eigenvectors form a
basis of Rn. If P is a matrix whose columns are the eigenvectors of A, then A
is diagonalizable if and only if the RREF of P is In.

An n×nmatrix A is orthogonally diagonalizable if and only if it is symmetric.
(Perhaps the quickest way to verify in Matlab that a matrix is symmetric is to
compute AT − A. If this matrix is the zeros matrix, then A is symmetric.) To
verify that the eigenvectors are orthogonal, we verify that PTP = In. Note that
this also verifies that Matlab has scaled each eigenvector to have norm 1.

After loading studio16.mat, we have

>> A’ - A

ans =

1.0e-015 *

0 0.2220 -0.4441

-0.2220 0 -0.1110

0.4441 0.1110 0

So A is orthogonally diagonalizable. We can verify that the eigenvectors of A
are orthogonal.

>> [P,D] = eig(A);

>> P’*P

ans =

1.0000 0.0000 -0.0000

0.0000 1.0000 0.0000

-0.0000 0.0000 1.0000

The negative signs here are due to roundoff error.
For B, we have

>> B

B =

0.5190 -5.2964 3.6414

0.2773 1.4586 -0.3316

-0.6234 -4.3733 4.0224
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The matrix B is clearly not symmetric. But it is diagonalizable:

>> [P,D] = eig(B)

P =

-0.8120 0.8481 0.0571

-0.0206 0.1180 0.5621

-0.5832 0.5165 0.8251

D =

3.0000 0 0

0 2.0000 0

0 0 1.0000

>> rref(P)

ans =

1 0 0

0 1 0

0 0 1

For B, we have

>> E

E =

3 0 0

0 2 0

1 0 3

The matrix E is clearly not symmetric. It is also not diagonalizable.

>> [P,D] = eig(E)

P =

0 0.0000 0

0 0 1.0000

1.0000 -1.0000 0

D =
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3 0 0

0 3 0

0 0 2

>> rref(P)

ans =

1 -1 0

0 0 1

0 0 0

Notice the free variable which implies the eigenvectors of E are not linearly
independent.

(1) We say two matrices A and B are similar if there exists a matrix P
such that A = PBP−1.

(a) Show that matrixA from studio16.mat is similar to D = diag([6,5,4]).
(Here D is the diagonal matrix with entries 6, 5, 4 in order along its main di-
agonal.)

We want a matrix P that diagonalizes A into D. But the only matrix that
diagonalizes A is the matrix P whose columns are the eigenvectors of A. Notice
that if A = PDP−1 if and only if P−1AP = D. Let’s check that we get the
correct D.

>> [P,D] = eig(A);

>> inv(P) * A * P

ans =

6.0000 0.0000 0

-0.0000 5.0000 -0.0000

0.0000 -0.0000 4.0000

So A is similar to D.

(b) Show that matrix F from studio16.mat is similar to D = diag([6,5,4]).

We follow the same procedure as the first part.

>> [Q,D] = eig(F);

>> inv(Q)*F*Q

ans =

6.0000 0.0000 -0.0000

0.0000 4.0000 -0.0000

0.0000 0 5.0000
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Notice that A is similar to D and F is similar to D, but A is not equal to F .

(c) Show that matrices A and F are similar.
We want a matrix R such that A = RFR−1. Notice that

P−1AP = D = Q−1FQ.

This implies that
A = PQ−1FQP−1.

Using the identity
(AB)−1 = B−1A−1

if A and B are appropriately sized and both invertible, we can define R = QP−1

and claim
A = R−1FR.

So A and F are similar.

(2) Let A be a symmetric n× n matrix.
(a) Show that A2 is symmetric.

We need to verify that (A2)T = A2. Recall that (AB)T = BTAT . Here,

(A2)T = (AA)T = ATAT = AA = A2,

where AT = A comes from the assumption that A is symmetric. So A2 is
symmetric as well.

(b) A symmetric matrix A such that A2 = A is known as a projection matrix.
Let y ∈ Rn, and define ŷ = Ay. Show that y − ŷ is orthogonal to ŷ.

We need to verify that (y − ŷ) ◦ ŷ = 0. Substituting and rearranging gives

(y − ŷ) ◦ ŷ = (y −Ay) ◦Ay

= y ◦Ay −Ay ◦Ay.

Using the definition v ◦w = vTw, we have

(y − ŷ) ◦ ŷ = yTAy − (Ay)TAy

= yTAy − yTATAy.

Since A is symmetric AT = A, and since A is a projection matrix A2 = A.
Combining these in sequence gives

(y − ŷ) ◦ ŷ = yTAy − yTATAy

= yTAy − yTAAy

= yTAy − yTAy

= 0.
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We conclude that ŷ = Ay is orthogonal to y− ŷ. Compare this to our work on
projections to conclude that the name projection matrix is appropriate here.

(c) Explain why the previous part shows that any vector in Rn is a lin-
ear combination of a vector in the image of A and a vector in the orthogonal
complement of the image of A.

Let z = y − ŷ. Then y = z + ŷ. The vector ŷ is in the image of A by
definition, and we have just shown that z one vector in the image of A. But I
don’t think is quite enough to actually prove that z is orthogonal to everything
in im(A).

Instead, note that im(A)⊥ = ker(AT ). We have

AT (y − ŷ) = ATy −ATAy

= Ay −A2y

= Ay −Ay

= 0.

Since z = y − ŷ ∈ ker(AT ), we can conclude that it is orthogonal to the image
of A.

(3) Show that if A is diagonalizable and invertible, then A−1 is, too.

If A is diagonalizable, then A = PDP−1 for some matrix P and diagonal
matrix D. Recalling that (ABC)−1 = C−1B−1A−1, we have

A−1 = (PDP−1)−1

= (P−1)−1D−1P−1

= PD−1P−1.

So A−1 is diagonalizable, and in fact, its associated matrices are P and D−1.

(4) Construct a 2× 2 matrix that is invertible but not diagonalizable.

Consider the matrix

A =

[
1 0

−1 1

]
.

We can confirm that A is invertible by verifying that rref(A) = I2, and we
confirm that A is not diagonalizable by verifying that rref(P ) 6= I2, where P
is the matrix whose columns are the eigenvectors of A.

>> A = [1 0; -1 1]

A =

1 0

-1 1
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>> rref(A)

ans =

1 0

0 1

>> [P,D] = eig(A);

>> rref(P)

ans =

1 1

0 0

(5) Construct a 2× 2 matrix that is diagonalizable but not invertible.

Consider the matrix

B =

[
1 2

2 4

]
.

We can confirm that B is not invertible by verifying that rref(B) 6= I2, and we
confirm that B is diagonalizable by verifying that rref(P ) = I2, where P is a
matrix whose columns are the eigenvectors of B.

>> B = [1 2; 2 4]

B =

1 2

2 4

>> rref(B)

ans =

1 2

0 0

>> [P,D] = eig(B);

>> rref(P)

ans =
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1 0

0 1

(6) Show that if A is invertible and orthogonally diagonalizable, then A−1

is, too.

We showed earlier that if A is invertible and diagonalizable, then A−1 is,
too. So here we need only verify that the eigenvectors of A−1 are mutually
orthogonal if the eigenvectors of A were. But notice that we showed

A−1 = PD−1P−1,

which shows the eigenvectors of A and A−1 are the same, so that if the eigen-
vectors of A are mutually orthogonal, then so are the eigenvectors of A−1.
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B.17 Studio 5.4 solutions

(0) (a) Given a matrixX, explain by the Matlab command B = X - ones(N,1)*mean(X)

returns a matrix B whose columns each have mean zero.

A good place to start here is to learn about the mean function in Matlab:

>> help mean

MEAN Average or mean value.

For vectors, MEAN(X) is the mean value of the elements in X. For

matrices, MEAN(X) is a row vector containing the mean value of

each column.

Say for the sake of argument that X is N × 2, so that X has only two columns,
and suppose in addition the first column has mean 1 and the second column has
mean 2. Then mean(X) = [1,2].

Notice that

M =


1

1
...

1

 [1 2] =


1 2

1 2
...

...

1 2

 .

So each column in B = X−M has zero mean exactly because we’ve subtracted
the mean from every entry in each respective column. Similar logic applies to
the general case.

(b) Suppose that (v1, λ1) and (v2, λ2) are two distinct eigenpairs of a matrix
ATA. Show that Av1 and Av2 are orthogonal.

We need to verify that Av1 ◦Av2 = 0.

Av1 ◦Av2 = (Av1)TAv2

= vT1 A
TAv2

= vT1 (λ2v2)

= λ2(v1 ◦ v2)

= 0.

We conclude that Av1 and Av2 are orthogonal.
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(1) Check out the data in pca_salary.csv. The Matlab variable textdata
contains the column headers describing the columns of the matrix data which
contains observations relating CEO age to CEO pay.

(a) Use PCA to determine the first principal component and second principal
components and their associated eigenvalues.

Define X to be the data matrix found in the file provided.

>> N = length(X(:,1));

>> B = X - ones(N,1)*mean(X);

>> S = 1/(N-1)*B’*B

S =

1.0e+004 *

0.0081 0.0253

0.0253 4.8635

>> [P,D] = eig(S)

P =

-1.0000 0.0052

0.0052 1.0000

D =

1.0e+004 *

0.0079 0

0 4.8636

So the first principal component is [0.0052, 1.0]T which has associated eigenvalue
λ1 ≈ 48, 636, and the second principal component is [−1.00, 0.0052]T which has
associated eigenvalue λ2 ≈ 79.

(b) Write an interpretation of the first and second principal components.

The first principal component represents an increasing trend of salary with
respect to age. Quantitatively, if a CEO’s age increases by 1 year, the dominant
trend predicts that her salary will increase 1/0.0052 ≈ 192 thousand dollars.

The second principal component represents a decreasing trend of salary with
respect to age. Quantitatively, if a CEO’s age increases by 1 year, the second
principal component predicts that her salary will decrease by .0052 thousand
dollars (that is, 5.2 dollars).
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(c) How many principal components must you include in order to capture
90% of the total variance?

The first principal component is tremendously dominant in this data set,
representing λ1/tr(S) = 99.84% of the total variance of the data set.
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(2) Check out the data in pca_temp.csv. The Matlab variable textdata

contains the column headers describing the columns of the matrix data which
contains observations relating latitude, longitude and average January temper-
ature over a 30 year time period.

(a) Use Google to locate the mean longitude and latitude of this data set
on a map. Longitude becomes more negative as you move west in this data set,
and latitude becomes more positive as you move north in this data set.

Let X be the data matrix. The longitude and latitude are represented by
the second and third columns of X, respectively.

>> mean(X)

ans =

26.5179 38.9696 -90.9625

The mean position of the data is therefore (38.9696, -90.9625), which is located
in Troy, Missouri. This is very near the geographic center of the country.

(b) Use PCA to determine the first principal component and second princi-
pal components and their associated eigenvalues.

>> N = length(X(:,1));

>> B = X - ones(N,1)*mean(X);

>> S = 1/(N-1)*B’*B

S =

179.0179 -61.0276 -4.7943

-61.0276 28.9287 -11.6538

-4.7943 -11.6538 224.0020

>> [P,D]= eig(S)

P =

-0.3344 0.9414 0.0434

-0.9407 -0.3362 0.0459

-0.0578 0.0255 -0.9980

D =

6.5181 0 0

0 200.6843 0

0 0 224.7462
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(c) Write an interpretation of the first and second principal components.

The first principal component is [0.0434, 0.0459,−0.9980]T . This reflects a
trend in which increasing latitude (that is, moving north) by 0.0459 degrees and
decreasing longitude (that is, moving west) by 0.9980 degrees results in a small
temperature increase, roughly 0.0434 degrees Fahrenheit. Since the movement
west is much, much larger than the movement north, we can essentially conclude
that there is a small increasing temperature trend as we move westward. This
makes sense, as much of the west coast of the United States is relatively warm
in January compared to the rest of the country.

The second principal component is [0.9414,−0.3362, 0.0255]T . This reflects
a trend in which decreasing latitude (that is, moving south) by 0.3362 degrees
and increasing longitude (that is, moving east) by 0.0255 degrees results in a
rather large temperature increase, roughly 0.9414 degrees Fahrenheit. Since the
change the latitude is much larger than the change in latitude, we can conclude
that there is a large increasing temperature trend as we move southward. This
makes sense, because temperature generally increases as we move towards the
equator.

(d) How many principal components must you include in order to capture
90% of the total variance?

We must include the first two principal components. The first captures only
approximately 224/trace(S) = 0.5186 percent of the variance.
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(3) Check out the data in pca_colleges.csv. The Matlab variable textdata
contains the column headers describing the columns of the matrix data which
contains observations a number of attributes of colleges, including acceptance
rate, average SAT score, and cost per year.

(a) Use PCA to determine the first principal component and second principal
components and their associated eigenvalues.

>> X = data;

>> N = length(X(:,1))

N =

50

>> B = X - ones(N,1)*mean(X);

>> S = 1/(N-1)*B’*B;

>> [P,D] = eig(S)

P =

0.0024 0.9811 -0.1546 0.0528 0.1036 0.0011

-0.0003 -0.1478 -0.6198 -0.3552 0.6540 0.2004

1.0000 -0.0024 -0.0002 -0.0001 -0.0003 -0.0001

0.0005 0.0752 0.7122 -0.1799 0.4367 0.5139

0.0002 0.0128 0.2899 -0.2029 0.4229 -0.8341

0.0000 0.0987 0.0280 -0.8930 -0.4381 0.0064

D =

1.0e+008 *

2.3306 0 0 0 0 0

0 0.0000 0 0 0 0

0 0 0.0000 0 0 0

0 0 0 0.0000 0 0

0 0 0 0 0.0000 0

0 0 0 0 0 0.0000

(b) Write an interpretation of the first principal component.

There’s a lot of information back in here. To make the numbers more
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tractable, let’s multiply the first principal component by 10,000:

p1 =



23.6572

−2.583

10, 000

4.5146

1.5509

0.2528


.

Since the third component of the principal vector is represents the price per
year, let’s interpret the other components of the principal component vector as
“what we get for spending 10,000.” For instance, for 10,000 you get a school
whose admission rate is roughly 2.583% smaller. The average student scores
roughly 23.6572 points higher on their SAT. Roughly 4.5% more of the students
will come from the top 10% of their class. You see a modest increase of 1.55%
of faculty members with PhDs. And perhaps most interesting, you see only a
0.2528% (don’t multiple by 100 here. It’s already taken into account) increase
in graduation rate.

These numbers are pretty interesting. They show that there is little de-
pendence of faculty profile or graduation chances for more expensive schools.
The quality of students does increase, fairly substantially in fact. And more
expensive schools tend to be more selective, though not all that much more.

(c) How many principal components must you include in order to capture
90% of the total variance?

The first principal component dominates the data by an extremely wide
margin.


