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krogh

In single capillaries the flow may become retarded or
accelerated from no visible cause; in capillary
anastomoses the direction of flow may change from time
to time.

(1922) Krogh
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big questions

I Are spontaneous oscillations possible in the absence of
biologic control given biologically relevant fluid properties and
network geometries?

I If so, what properties are necessary and/or sufficient to
achieve oscillations?

I If not, are certain properties are inhibiting oscillations?
Topology? Geometry? Viscosity?

I Or is biologic control simply essential for interesting behaviors
to emerge?
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related work

(1994) Kiani et al. – simulations of large networks show oscillations
in the absence of biologic control (≈ 400 vessel segments)

(2000) Carr and Lacoin – simulations show oscillations and period
doubling dynamics in small networks (≈ 15 vessel segments)

(2007) Geddes et al. – simple two-node network model predicts
oscillations only for biologically irrelevant network geometries

(2012) Forouzan et al. – in vitro experiments with real blood exhibit
oscillations in good agreement with theoretical work
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example networks and assumptions

I Ignore growth and adaption

I Inlet and outlet pressures and flows are constant

I Incompressible, laminar flow
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viscosity

We approximate the viscosity of the fluid with an Arrhenius law

µ = µα

(
µβ
µα

)φ

.

In the context of microvascular blood flow,

I µα is the viscosity of plasma,

I µβ is the viscosity of red blood cells,

I φ ∈ [0, 1] is the hematocrit, i.e., red blood cell concentration
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plasma skimming

(1982) Klitzman and Johnson
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video

H.N. Mayrovitz
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current network

QCRC + QBRB = QARA

QC =
Q1RA − Q2RB

RA + RB + RC
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the flow equation

QC =
Q1RA − Q2RB

RA + RB + RC

I Flow in branch C depends on the hydraulic resistances,

I which depend on the viscosity in each branch through
Poiseuille’s law,

I which depends on the hematocrit in each branch through the
Arrhenius law,

I which depends on the flow in each branch through plasma
skimming . . .

QC = ψ(QC )
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multiple equilibria
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PDE model

For vessel i ,

dΦi

dt
+

(
4Qi (t)

πd2
i

)
dΦi

dxi
= 0.

Nondimensionalization using

x̂i =
xi
`i
, Q̂i =

Qi

Qtotal
, t̂ =

Qtotal

Vtotal
t

gives

dΦi

dt̂
+

(
QiVtotal

ViQtotal

)
dΦi

dx̂i
= 0.

This methodology scales well to larger networks.
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limit cycles
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dynamics phase portrait
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future work

I Empirical confirmation

I Increase topological complexity to search for oscillations in
biologically relevant networks

I Spontaneous flow reversal?

I More interesting dynamics?
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