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The Onset of Oscillations in Microvascular Blood Flow∗

John B. Geddes†, Russell T. Carr‡, Nathaniel J. Karst†, and Fan Wu‡

Abstract. We explore the stability of equilibrium solution(s) of a simple model of microvascular blood flow
in a two-node network. The model takes the form of convection equations for red blood cell con-
centration, and contains two important rheological effects—the F̊ahræus–Lindqvist effect, which
governs viscosity of blood flow in a single vessel, and the plasma skimming effect, which describes
the separation of red blood cells at diverging nodes. We show that stability is governed by a linear
system of integral equations, and we study the roots of the associated characteristic equation in
detail. We demonstrate using a combination of analytical and numerical techniques that it is the
relative strength of the F̊ahræus–Lindqvist effect and the plasma skimming effect which determines
the existence of a set of network parameter values which lead to a Hopf bifurcation of the equilibrium
solution. We confirm these predictions with direct numerical simulation and suggest several areas
for future research and application.

Key words. blood flow, microvascular network, instability, bifurcation

AMS subject classifications. 37-xx, 92-xx

DOI. 10.1137/060670699

1. Introduction. Periodic or oscillatory dynamics in biological systems are common. Ex-
amples include the pacemaker in the heart, breathing patterns, and periodic fluctuations in
leukocyte production in leukemia [15]. These types of phenomena require models consisting of
nonlinear equations, most often in the form of nonlinear differential equations [14]. In fact, the
modeling and analysis of complex physiological signals is a very active area for the application
and development of dynamical systems theory [16].

Another example of fluctuating dynamics in biology is microvascular blood flow. Nobel
prize winner August Krogh noted the heterogeneity of blood flow in the webbed feet of frogs
in the early 1920’s [24]. In The Anatomy and Physiology of Capillaries he wrote [23]

In single capillaries the flow may become retarded or accelerated from no visible
cause; in capillary anastomoses the direction of flow may change from time to
time.

As more techniques were developed for measuring events in microcirculation, more fluctua-
tions were reported. The servo-null pressure measurement system of Wiederhielm et al. [35]
and Johnson and Wayland’s [20] dual slit red cell velocity measurement device showed that
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fluctuations practically always occur in microvessels. These fluctuations are usually inter-
preted as evidence of “biological control” of the flow (precapillary sphincters, vasomotion,
etc.). In fact the sine qua non cause for observed oscillations is often vasomotion [32].

However, oscillations may not be due solely to “biological control.” In 1973 Y. C. Fung
suggested that the observed dynamics might be due to statistical variations in the properties
of cells and vessels [13]. Fung hypothesized that small stochastic variations in cell size or
membrane stiffness could lead to apparently random fluctuations in flow and pressure in
simple networks. He outlined a program of study of blood cell properties, vessel mechanics,
blood rheology, and network geometry to be completed before his hypothesis could be tested;
in many ways this research program is still active today [28].

The 1990’s saw several attempts to apply the ideas of nonlinear dynamics to the micro-
circulation. Time series analysis of fluctuations suggested that the oscillations may be due
to deterministic chaos. Yip, Nolstein-Rathlou, and Marsh [36] proposed that pressure os-
cillations in the kidney were due to nonlinearities in the tubuloglomerular feedback control
mechanism including multiple time delays. Cavalcanti and Ursino [6] developed computer
simulations of vasomotion in microvessels. They included both passive and active response to
pressure which resulted in oscillations in vessel diameter or blood flow. Griffith [17] measured
fluctuations in pressure and flow in the rabbit ear, again attributing vasomotion as the cause
of the fluctuations. He also estimated the correlation dimension from the time series data to
be between two and three and suggested that the dynamics were due to vasomotion control.
More recently, Mollica, Jain, and Netti [26] interpreted the heterogeneity in tumor blood flow
in terms of collapsible conduits for blood flow and Parthimos et al. [27] analyzed fluctuations
in arteriol diameter and red cell velocity in the microcirculation of rats and measured small,
positive Lyapunov exponents.

While the importance of vasomotion cannot be denied, there is growing evidence that
fluctuations in microvascular blood flow can be due to inherent instabilities in the capillary
network. Kiani et al. [21] found spontaneous oscillations in blood velocity in hamsters, even
under experimental conditions which rule out myogenic or vasomotive effects. They also
formulated a mathematical model of network blood flow and found good qualitative agreement
with their experimental results. Their blood flow model is based on following slugs of red
blood cells through the capillary network; the red blood cells move with a velocity which is
determined by the hydraulic resistance of the network. In a network consisting of almost
four hundred vessels (the topology and geometry were based on direct in vivo observations),
spontaneous oscillations were found in 30% of them; the other vessels had steady flow and
hematocrit.

Carr and LeCoin [4] reformulated the model as a system of partial differential equations
for blood hematocrit. They found that blood velocity, hematocrit, and nodal pressures can
oscillate spontaneously in the absence of biological control in small networks with about
fifteen vessels. They found evidence of Hopf bifurcations and limit cycles but were unable
to determine which parameters controlled the dynamics. In 2005, Carr, Geddes, and Wu [5]
demonstrated that oscillations were possible in a network consisting of only two nodes and
four vessels—the so-called two-node network. While the dimensionless parameters governing
the onset of instability were discovered, finding unstable parameter values was an exercise in
educated guessing. In addition, the influence of the various rheological properties of blood
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was poorly understood.

In this paper, we focus our attention on the two-node network and analyze in detail
the onset of instability via Hopf bifurcation. In section 2 we review the major rheological
properties of blood, including the F̊ahræus–Lindqvist effect and the plasma skimming effect.
We also introduce two simple, parametric models for these effects which make the analysis
tractable. In section 3 we introduce the model of the two-node network and discuss the
equilibrium solutions. In section 4 we derive the linearized equations close to steady state and
the resulting characteristic equation that governs stability. In section 5 we show that Hopf
bifurcations are possible, and we describe their dependence on three dimensionless parameters.
In section 6 we develop a method for mapping the Hopf bifurcation points back to parameter
space, thus allowing us to predict the network geometries that lead to instability, which
we confirm via direct numerical simulation. We also investigate the relative importance of
the F̊ahræus–Lindqvist effect and the plasma skimming effect using two lumped parameters.
Finally, in section 7 we offer some closing thoughts and remarks.

2. Blood rheology in microvessels. Blood is a concentrated suspension containing red
blood cells, white blood cells, and platelets. These components are suspended in plasma, an
aqueous solution containing a variety of ions and macromolecules. We focus our attention
on the red blood cells, which are biconcave discs with a typical diameter of about 8μm and
thickness of 2μm. Normal blood has a volume concentration of red blood cells (hematocrit)
of about 45%.

The microcirculation consists of vessels with diameters ranging from 10μm to 100μm,
and is responsible for heat and mass exchange with the surrounding tissues; every cell in
the body is within 100μm of a capillary. In this section we review two important rheological
effects which we include in our model. The F̊ahræus–Lindqvist effect captures the hematocrit-
and diameter-dependent viscosity of blood when flowing through a single vessel. The plasma
skimming effect describes the way red blood cells are distributed at a diverging node. We also
propose two simple parametric versions of these which we use in this study in order to make
the analysis tractable.

2.1. The F̊ahræus–Lindqvist effect. In the mid-nineteenth century, Jean Leonard Marie
Poiseuille turned from his studies on the microcirculation of the frog to a series of detailed
experiments on the flow of liquids in small glass capillaries [33]. Poiseuille demonstrated
experimentally that the resistance to flow, defined as the ratio of the pressure drop to the
volumetric flow rate, in a glass tube of circular cross-section is proportional to the length of
the tube and inversely proportional to the fourth power of the diameter. In modern notation,
Poiseuille’s law reads

R =
128Lμ

πD4
,

where R is the resistance to flow, D is the diameter of the tube, L is the length of the vessel,
and the constant of proportionality μ is a measure of the viscosity of the fluid. The first theo-
retical derivation of Poiseuille’s law seems to have been published in 1860 by Hagenbach, but
numerous authors appear to have made similar derivations during the same time period [33].

In 1931 F̊ahræus and Lindqvist [11] conducted a set of experiments on blood flow through
narrow capillary tubes with diameters ranging from 30μm to 300μm. They demonstrated



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE ONSET OF OSCILLATIONS 697

(a)
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

Hematocrit

R
el

at
iv

e 
V

is
co

si
ty

Dependence of Viscosity on Hematocrit

D = 100 μm
D = 50 μm
D = 10 μm

(b)
10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Diameter (μm)

R
el

at
iv

e 
V

is
co

si
ty

Dependence of Viscosity on Diameter

H = 0.8
H = 0.5
H = 0.2

Figure 1. Relative viscosity as a function of hematocrit and diameter from (2.1)–(2.3). (a) Viscosity
dependence on hematocrit for diameters of 10μm, 50μm, and 100μm. (b) Viscosity dependence on diameter
for hematocrit values of H = 0.2, H = 0.5, and H = 0.8.

that the viscosity of blood, computed according to Poiseuille’s law, decreases with decreasing
tube diameter, and they hypothesized that this was due to the red blood cells acting as a
suspension. While not explicitly remarked upon in their paper, the viscosity of blood also
depends upon hematocrit.

The dependence of blood viscosity on tube diameter (and hematocrit) has been confirmed
by numerous investigators. In an empirical tour de force, Pries, Neuhaus, and Gaehtgens [30]
compiled a database of viscosity measurements in tubes with diameters ranging from 3μm
to 2000μm and with a range of hematocrits from 0 to 0.93. They also conducted a new set
of experiments using a capillary viscometer and combined all of the data into an empirical
relationship for the relative viscosity of blood μ(H,D),

(2.1) μ(H,D) = 1 + (μ0.45 − 1)
(1 −H)C − 1

(1 − 0.45)C − 1
,

where H is the hematocrit and μ0.45 is the relative viscosity of blood at H = 0.45 which
depends on diameter,

(2.2) μ0.45 = 220e−1.3D + 3.2 − 2.44e−0.06D0.645
.

The parameter C also depends on diameter according to

(2.3) C =
1

1 + 1011D12
+ (0.8 + e−0.075D)

(
−1 +

1

1 + 1011D12

)
,

and in both cases D is measured in microns. An example of the relative viscosity dependence
on hematocrit is shown in Figure 1a for diameter values of 10μm, 50μm, and 100μm. Notice
that in each case the relative viscosity is unity at zero hematocrit and increases monotonically
with increasing hematocrit and that increasing the diameter leads to an increase in relative
viscosity. An example of the relative viscosity dependence on diameter is shown in Figure 1b
for diameters in the range of 10μm to 100μm and hematocrit values of H = 0.2, H = 0.5,
and H = 0.8.
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Figure 2. Diverging node. The feed vessel has diameter DF , flow QF , and hematocrit HF . Daughter
vessels A and B have diameters DA and DB, flows QA and QB, and hematocrits HA and HB, respectively.

2.2. The plasma skimming effect. August Krogh introduced the term plasma skimming
in 1921 in order to explain the disproportionate distribution of red blood cells observed at
microvascular bifurcations in vivo [24]. In the absence of plasma skimming, the hematocrit
entering a side branch would equal that of the feed vessel, or, alternatively, the flow ratio
of red blood cells entering a side branch would equal the volumetric flow ratio. Numerous
authors, however, have demonstrated both in vitro and in vivo that the red blood cell flow
ratio is a nonlinear function of the volumetric flow ratio which implies that the hematocrit
ratio is not unity but depends on the volumetric flow ratio. In order to be clear, consider the
diverging bifurcation shown in Figure 2, which consists of a feed vessel F and two daughter
vessels A and B. Denote the hematocrit and flow in the feed and daughter vessels as HF , QF ,
HA, QA, HB, and QB, respectively. In general, the hematocrit ratio HA/HF is a function of
the flow ratio Q = QA/QF and is parameterized by the feed hematocrit HF and the diameters
of the vessels DF , DA, and DB [12].

Many attempts to derive or measure the so-called plasma skimming function have been
made. In vitro studies using plastic particles were conducted by Bugliarello and Hsiao [3] and
Chien et al. [7], while Dellimore, Dunlop, and Canham [8] and Fenton, Carr, and Cokelet [12]
conducted in vitro experiments using human blood. Klitzman and Johnson [22] performed in
vivo experiments using hamsters, while Pries, Ley, and Gaehtgens [29] examined the distribu-
tion of red cells at sixty-five arteriol bifurcations in the rat mesentry. Some general conclusions
can be drawn from these studies: red cells are not distributed in proportion to the volume
flow; there is a critical fractional flow, Q0, to a side branch below which the latter receives no
blood cells; and side branch hematocrit is not always equal to feed hematocrit for Q = 0.5.
Pries, Ley, and Gaehtgens [29] fitted experimental data to the piecewise plasma skimming
function

(2.4)
HAQA

HFQF
=

⎧⎪⎨
⎪⎩

0, Q < Q0,
er(Q−Q0)p

er(Q−Q0)p+(1−Q−Q0)p , Q0 ≤ Q ≤ 1 −Q0,

1, Q > 1 −Q0,

and determined the dependence of the dimensionless fitting parameters on the network pa-
rameters as

r = −6.96

DF
ln

(
DA

DB

)
,
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Figure 3. Plasma skimming function from (2.4). (a) HF = 0.4, DF = DA = DB = 20μm. (b) HF = 0.4,
DF = 20μm, DA = 80μm, DB = 60μm.

p = 1 + 6.98
(1 −HF )

DF
,

Q0 =
0.4

DF
,

where all of the diameters are measured in microns. More recently, Enden and Popel [10] con-
ducted three-dimensional simulations of flow in a T-type bifurcation and found good agreement
with the various experimental studies mentioned above.

In Figure 3 we plot Pries, Ley, and Gaehtgens’s plasma skimming function for a couple
of different parameter values in order to highlight the key features. We choose to plot the
hematocrit ratio as a function of flow ratio for reasons that will become clear in future sections.
Figure 3a shows both the hematocrit ratio in branch A and the hematocrit ratio in branch
B as functions of the flow ratio Q = QA/QF for the following parameter values: HF = 0.4,
DF = 20μm, and DA = DB = 20μm. As a result of the equal diameters in the daughter
branches, the parameter r = 0, which implies that the hematocrit ratio in both branches is
unity for Q = 0.5. In addition, there is a critical flow rate of Q0 = 0.02 below which there
is no hematocrit entering branch A and a similar value for branch B. For this symmetric
set of parameters, the hematocrit ratio in branch B is simply obtained by reflection about
the Q = 0.5 axis. Note that there is a discontinuity in the derivative of either function at
Q0 and 1 − Q0. In Figure 3b we show the plasma skimming function in each branch for a
nonsymmetric bifurcation. The parameter values are HF = 0.4, DF = 20μm, DA = 80μm,
and DB = 60μm. The nonequal daughter branches mean that the parameter r �= 0, which
breaks the symmetry of the plasma skimming functions about Q = 0.5. Although the plasma
skimming functions are no longer mirror images, red blood cell flow is still conserved; i.e.,

(2.5) QFHF = QAHA + QBHB.

2.3. Parametric models. The empirical models of Pries et al. [29, 30] provide a detailed
description of the dependence of viscosity and plasma skimming on the various vessel and flow
parameters. In order to gain insight, however, we propose using simple parametric models for
the F̊ahræus–Lindqvist effect and plasma skimming effect as follows. We assume the viscosity
has an exponential dependence on hematocrit,

(2.6) μ(H) = eδH ,
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Figure 4. Simple parametric models. (a) Exponential viscosity model. (b) Logit plasma skimming model.

where δ is an adjustable parameter. In what follows we will assume that the same δ applies
in any branch. In Figure 4a we plot the exponential function for three different values of
δ. This parametric model captures the relevant feature of the Pries et al. viscosity model,
namely, that viscosity is a monotonically increasing function of hematocrit with μ(0) = 1. The
choice of an exponential model is not unreasonable: the viscosity model of Pries, Neuhaus,
and Gaehtgens [30] demonstrates a strong dependence on hematocrit; we have used other
monotonically increasing models and find no substantial differences in the results that follow;
and, perhaps most importantly, the exponential model makes the analysis tractable.

It is also impossible to capture all of the features of the plasma skimming function with
only a single parameter. However, Carr, Geddes, and Wu [5] showed that the key ingredient
is the existence of a maximum. We will use a semiempirical model proposed by Klitzman and
Johnson [22],

(2.7)
HAQA

HFQF
=

Qp

Qp + (1 −Q)p
,

where p > 1 is an adjustable parameter and Q ∈ [0, 1]. This model does not have a critical
flow rate, nor does it give rise to nonsymmetric plasma skimming functions. It does, however,
have a single maximum. Increasing the value of p leads to very low values of hematocrit for
low values of Q while also leading to an increase in the maximum hematocrit. In Figure 4b
we plot the hematocrit ratio as a function of flow ratio for several different values of p. Note
that increasing p leads to a greater maximum value which slowly shifts toward Q = 0.5. In
the limit as p → ∞, the plasma skimming function is piecewise continuous and behaves as
1/Q for Q ≥ 0.5.

3. The two-node network model. The model which we use was first proposed by Kiani
et al. [21] and later reformulated by Carr and LeCoin [4]. It is a continuous model and
assumes that the essence of microvascular blood flow can be captured with a position- and
time-dependent hematocrit function. It is therefore a one-dimensional model and ignores
the three-dimensional aspect of the problem and the discrete nature of red blood cells. In
sections 3.1 and 3.2 we describe the partial differential equation model and relevant boundary
conditions, while in section 3.3 we prove that there exists at least one equilibrium solution of
the model, and we also find conditions under which there are multiple equilibria.
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Figure 5. The two-node network consists of a single inlet and a single outlet.

3.1. The PDE model. Consider the simple two-node network shown in Figure 5. We
assume that the hematocrit in each branch is governed by a first-order wave equation of the
form

∂HA

∂t
+ vA

∂HA

∂xA
= 0, 0 ≤ xA ≤ lA, t ≥ 0,

∂HB

∂t
+ vB

∂HB

∂xB
= 0, 0 ≤ xB ≤ lB, t ≥ 0,

where HA(xA, t) and HB(xB, t) are the hematocrits in branches A and B, respectively. This is
an appropriate description for the one-dimensional transport of red cells with small dispersion.
The propagation velocity in each branch is proportional to the flow in each branch

vA(t) =
4QA(t)

πd2
A

,

vB(t) =
4QB(t)

πd2
B

,

where QA and QB are the flows in branches A and B, respectively, and dA and dB are the
diameters of branches A and B, respectively. It is possible to express both velocities in terms
of the fractional flow in branch A, Q(t) = QA(t)/QF , where QF is the steady volumetric
flow rate in the feed branch. Conservation of volumetric flow at the branch implies that
QA(t) + QB(t) = QF . It also implies that 0 ≤ Q(t) ≤ 1.

A dimensionless form of the governing equations may be derived by scaling space and time
according to

x̂A =
xA
lA

,

x̂B =
xB
lB

,

t̂ = t
4QF

πd2
AlA

,

which results in the following dimensionless propagation equations:

∂HA

∂t
+ Q

∂HA

∂xA
= 0, 0 ≤ xA ≤ 1, t ≥ 0,(3.1)

∂HB

∂t
+ α(1 −Q)

∂HB

∂xB
= 0, 0 ≤ xB ≤ 1, t ≥ 0.(3.2)
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The hats have been dropped for convenience and the parameter α has been introduced. It is
the ratio of the volume of branch A to that of branch B,

α =
lAd

2
A

lBd2
B

.

The propagation velocity in branch A is now Q, while in branch B the velocity is α(1 −Q).

3.2. Constitutive relations and boundary conditions. The governing equations, (3.1)–
(3.2), are accompanied by constitutive relations and boundary conditions. Conservation of
flow and the two-node network topology determine the fractional flow rate in branch A in
terms of the hydraulic resistance of each branch,

(3.3) Q(t) =
RB(t)

RA(t) + RB(t)
,

with a similar expression for branch B. In turn, the hydraulic resistance in each branch is
determined by the F̊ahræus–Lindqvist effect,

RA(t) =
128lA
πd4

A

μA(H̄A(t), dA),(3.4)

RB(t) =
128lB
πd4

B

μB(H̄B(t), dB),(3.5)

where μA and μB are the relative viscosities in branches A and B, respectively. The viscosity in
each branch is a function of the axially averaged hematocrit in the branch and the diameter
of the branch. Finally, the entrance hematocrit to each branch is governed by the plasma
skimming effect,

HA(0, t) = HF f(Q(t)),(3.6)

HB(0, t) = HF g(Q(t)),(3.7)

where HF is the hematocrit of the feed branch, and the functions f and g specify the plasma
skimming effect for branches A and B, respectively. The governing equations (3.1)–(3.2), along
with the constitutive relations (3.3)–(3.5) and boundary conditions (3.6)–(3.7), completely
determine the problem.

3.3. Equilibrium solutions. In steady state, ∂HA/∂t = 0, the hematocrit along each
branch is constant and equal to the entrance hematocrit. The entrance hematocrit depends
on the steady state flow Q∗, which in turn implies that the steady state viscosity μ∗

A is a
function of Q∗. The hydraulic resistance in each branch is therefore a function of Q∗ in steady
state, and (3.3) becomes

(3.8) Q∗ = ψ(Q∗),

where the nonlinear function on the right-hand side may be written as

(3.9) ψ(Q∗) =
1

1 +
d4
B lAμ∗

A

d4
AlBμ∗

B

.
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Figure 6. Steady state solutions are given where the function ψ, defined in (3.9), crosses the line of unit
slope. The parameter values are δHF = 8, lA/lB = 10, and dB/dA = 10. For p = 4 there is one steady state
solution, while for p = 8 there are three steady state solutions.

The steady state viscosity is determined via the relations

μ∗
A = μA(H̄∗

A, dA),(3.10)

μ∗
B = μB(H̄∗

B, dB),(3.11)

H̄∗
A = HF f(Q∗),(3.12)

H̄∗
B = HF g(Q

∗).(3.13)

We are now ready to state our first result concerning the existence of equilibrium solutions.
Theorem 3.1. Assume that μA and μB are positive, continuous functions of H̄A and H̄B.

Also assume that f and g are continuous functions of Q∗. Then at least one steady state
solution to (3.8)–(3.10) exists.

Proof. We appeal to the Brouwer fixed-point theorem. If the viscosity functions are con-
tinuous functions of H̄A and H̄B and the plasma skimming functions are continuous functions
of Q∗, then ψ(Q∗) is continuous. In addition, the positivity of the viscosity functions implies
that ψ ∈ [0, 1] for all Q∗ ∈ [0, 1]. By the fixed-point theorem this implies that at least one
root exists with Q∗ ∈ [0, 1].

A closed form solution for Q∗ cannot be obtained except in the case of simple viscosity
models. Solutions can be visualized, however, by plotting ψ(Q∗) versus Q∗ as demonstrated in
Figure 6 for different parameter values. Equilibrium solutions are given where the function ψ
crosses the line of unit slope. Here we use the parametric models with the following parameter
values: δHF = 8, lA/lB = 10, and dB/dA = 10. Notice that while Theorem 3.1 guarantees
that a root exists, it does not guarantee that it is unique. Indeed, Figure 6 demonstrates
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that, as we hold the value of δHF fixed and change from p = 4 to p = 8, we transition from
a system with a single steady state to one with multiple steady states. We state and prove
below a condition which guarantees that the steady state is unique.

Theorem 3.2. Define two dimensionless parameters, b and c, according to

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,

c = HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

.

The steady state solution is unique if and only if

b + c < 1

for all Q∗ ∈ (0, 1). The derivative of μA with respect to the average hematocrit is

μ′∗
A =

∂μA

∂H̄A

∣∣∣∣
Q∗

,

while the derivative of f with respect to the flow rate is

f ′(Q∗) =
df

dQ

∣∣∣∣
Q∗

.

Similar expressions apply to branch B.
Proof. Since Q∗ is constrained to the closed interval [0, 1], we can rearrange (3.8) for the

ratio of the lengths,

(3.14)
lA
lB

=

(
dA
dB

)4 (1 −Q∗

Q∗

)
μ∗
B

μ∗
A

,

and use this formulation to determine whether the equilibrium solution is unique. The positive,
continuous viscosity functions imply that lA/lB ≥ 0 for all Q∗ ∈ [0, 1] and that

lim
Q∗→0

lA
lB

= +∞,

lim
Q∗→1

lA
lB

= 0.

The length ratio therefore cannot be a monotonically increasing function of Q∗. If d(lA/lB)
dQ∗ < 0

for all Q∗ ∈ (0, 1), then the length ratio is a monotonically decreasing function of Q∗, which
implies that the steady state solution Q∗ is unique for any set of network parameters. The
derivative is

d

dQ∗

(
lA
lB

)
=

1

Q∗2
μ∗
B

μ∗
A

(
dA
dB

)4

(b + c− 1) ,

thus proving that the equilibrium solution is unique if b+ c−1 < 0 for all Q∗. If, on the other
hand, there exists a Q∗ ∈ (0, 1) for which d(lA/lB)

dQ∗ > 0, then, by continuity of lA/lB, there
exists multiple equilibrium solutions for some set of network parameters.
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4. Linearized equations. While the governing partial differential equations and accompa-
nying constitutive relations are convenient for numerical simulation, they are not very useful
from an analytical point of view. They can, however, be linearized and then transformed into
a corresponding system of delay equations which can in turn be manipulated into a single
linear integral equation. This proves to be most convenient in analyzing the linear stability
of the steady state solution(s).

We begin by rewriting the governing partial differential equations (3.1)–(3.2) about the
steady state solution. We assume that Q(t) = Q∗ for t < 0, H̄A(t) = H̄∗

A, and H̄B(t) = H̄∗
B

for t ≤ 0. A perturbation will be introduced into the flow rate by specifying Q(0) �= Q∗ and
defining

Q(t) = Q∗ + Q̃(t),

HA(xA, t) = H̄∗
A + H̃A(xA, t),

HB(xB, t) = H̄∗
B + H̃B(xB, t).

Replacing into (3.1)–(3.2) and grouping terms lead to the system of partial differential equa-
tions

∂H̃A

∂t
+ Q∗∂H̃A

∂xA
= −Q̃

∂H̃A

∂xA
,(4.1)

∂H̃B

∂t
+ α(1 −Q∗)

∂H̃B

∂xB
= αQ̃

∂H̃B

∂xB
.(4.2)

If we drop the nonlinear terms on the right-hand side, then the linearized equations consist
of two coupled, constant velocity propagation equations for perturbations to the equilibrium
hematocrit. We can define the steady state propagation (or delay) times in branches A and
B, respectively, as

τ∗ =
1

Q∗ ,

θ∗ =
1

α(1 −Q∗)
.

A more convenient form for analysis can be found by integrating (4.1)–(4.2) over the spatial
variable in each branch,

τ∗
dĤA

dt
= H̃A(0, t) − H̃A(1, t),

θ∗
dĤB

dt
= H̃B(0, t) − H̃B(1, t),

where ĤA is defined by

ĤA(t) =

∫ 1

0
H̃A(xA, t) dxA,

and similarly for ĤB. This implies that

H̄A(t) = H̄∗
A + ĤA(t),
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with a similar expression for the other branch.

We now make use of the fact that our governing linearized equations are a pair of first-order
wave equations with constant velocity. This implies that the hematocrit in each branch simply
propagates along the appropriate characteristic with velocity Q∗ in branch A and α(1−Q∗) in
branch B. The hematocrit at the exit of vessel A is therefore the hematocrit at the entrance
at an earlier time, namely, τ∗. With this in mind, the governing equations reduce to

τ∗
dĤA

dt
= H̃A(0, t) − H̃A(0, t− τ∗),

θ∗
dĤB

dt
= H̃B(0, t) − H̃B(0, t− θ∗).

Recall that the entrance hematocrit in branch A is specified by the plasma skimming rule
(3.6) which linearizes to give

HA(0, t) = HF f(Q),

⇒ HA(0, t) = HF (f(Q∗) + f ′(Q∗)Q̃),

⇒ H̃A(0, t) = HF f
′(Q∗)Q̃,

with a similar expression for branch B. Our linearized governing equations become

τ∗
dĤA

dt
= HF f

′(Q∗)
(
Q̃(t) − Q̃(t− τ∗)

)
,

θ∗
dĤB

dt
= HF g

′(Q∗)
(
Q̃(t) − Q̃(t− θ∗)

)
,

which is a pair of delay differential equations with constant delay. If we integrate each of these
from t = 0 to t = T we find

τ∗ĤA(T ) = HF f
′(Q∗)

∫ T

0

(
Q̃(s) − Q̃(s− τ∗)

)
ds,(4.3)

θ∗ĤB(T ) = HF g
′(Q∗)

∫ T

0

(
Q̃(s) − Q̃(s− θ∗)

)
ds,(4.4)

where we have used the initial conditions ĤA(0) = 0 and ĤB(0) = 0. In addition, we can
decompose the remaining integrals into two pieces,

∫ T

0
Q̃(s− τ∗) ds =

∫ τ∗

0
Q̃(s− τ∗) ds +

∫ T

τ∗
Q̃(s− τ∗) ds,

and use the initial condition on the flow perturbation to conclude that the first term is zero.
A change of variables results in

∫ T

0
Q̃(s− τ∗) ds =

∫ T−τ∗

0
Q̃(u) du.
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Replacing and combining with the other integral give the following set of integral equations:

τ∗ĤA(T ) = HF f
′(Q∗)

∫ T

T−τ∗
Q̃(u) du,(4.5)

θ∗ĤB(T ) = HF g
′(Q∗)

∫ T

T−θ∗
Q̃(u) du.(4.6)

Equations (4.5)–(4.6) allow us to compute the axially averaged hematocrit perturbation.
To do so we require the flow perturbation and its history. The problem is closed when we
linearize the constitutive relation (3.3). Using the notation developed in section 3.3 we see
that

Q(t) = Q∗ +
∂ψ

∂H̄A

∣∣∣∣
Q∗

(
H̄A(t) − H̄∗

A

)
+

∂ψ

∂H̄B

∣∣∣∣
Q∗

(
H̄B(t) − H̄∗

B

)
,

⇒ Q̃(t) =
∂ψ

∂H̄A

∣∣∣∣
Q∗

ĤA(t) +
∂ψ

∂H̄B

∣∣∣∣
Q∗

ĤB(t).

The partial derivatives are straightforward to compute and are given by

∂ψ

∂H̄A

∣∣∣∣
Q∗

= −Q∗(1 −Q∗)
μ′∗
A

μ∗
A

,

∂ψ

∂H̄B

∣∣∣∣
Q∗

= Q∗(1 −Q∗)
μ′∗
B

μ∗
B

.

Combining (4.5)–(4.6) and the expression for Q̃(t) results in the linear integral equation

(4.7) Q̃(T ) =
b

τ∗

∫ T

T−τ∗
Q̃(u) du +

c

θ∗

∫ T

T−θ∗
Q̃(u) du,

where the dimensionless parameters b and c are the same as those defined in Theorem 3.2,

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,(4.8)

c = +HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

.(4.9)

Equations (4.7)–(4.8) completely determine the linear stability of the steady state flow rate
Q∗ to a perturbation Q̃(T ) such that Q̃(T ) = 0 for all T < 0 and Q̃(0) �= 0.

The characteristic equation can be obtained by seeking a solution of the linear integral
equation in the form

(4.10) Q̃(T ) = Q̃(0)eλT ,

where λ is complex. A nontrivial solution of (4.7) subject to the solution (4.10) exists if and
only if λ satisfies the characteristic equation

1 = b
(1 − e−λτ )

λτ
+ c

(1 − e−λθ)

λθ
,
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where we have dropped the ∗ for convenience. It will prove more fruitful if we make a change
of variables and eliminate one of the delay times in favor of the ratio of the delay times. If we
redefine λ̂ = λτ , then we obtain

(4.11) 1 = b
(1 − e−λ)

λ
+ c

(1 − e−λγ)

λγ
,

where again we have dropped the hats for convenience. We have introduced a new dimension-
less parameter, γ, which is the ratio of the steady state delay times, i.e.,

(4.12) γ =
θ

τ
=

Q∗

α(1 −Q∗)
.

It is clear from l’Hôpital’s rule that λ = 0 is not a root of (4.11) unless b + c = 1. This is
a degenerate case and coincides with the creation of multiple equilibria, as demonstrated in
section 3.3. We will not analyze this case here but focus instead on the modified characteristic
equation,

(4.13) λ = b(1 − e−λ) +
c

γ
(1 − e−λγ),

where we ignore the zero root of (4.13). This characteristic equation depends on the three
dimensionless parameters, b, c, and γ. The delay time ratio γ generally takes values on (0,∞)
depending on the network parameters. However, we will consider only networks with values
of γ ∈ (0, 1) since interchanging the vessel lengths and diameters results in α → 1/α and
Q∗ → 1 −Q∗. This implies that γ → 1/γ, which recovers the original domain.

5. The characteristic equation. The characteristic equation (4.13) governs the stability
of the two-node network. It is similar to a characteristic equation that has received some
attention in the delay differential equation literature,

(5.1) λ + a + be−τ1λ + ce−τ2λ = 0,

where τ1 and τ2 are the delays and a, b, and c are free parameters. Clearly our characteristic
equation is related, but it is not simply a special case of (5.1)—it is important that the delay
γ appear explicitly both inside and outside the exponential function in (4.13).

Several authors have considered the solutions of (5.1) using a variety of techniques [19, 9,
18, 2, 25]. The central question is whether there are any roots with Re(λ) > 0. Hayes [19]
studied the single delay problem (c = 0) and found conditions on the parameters for which all
the roots lie to the left of the imaginary axis. The single delay equation is also discussed by
El’sgol’ts and Norkin using the method of D-partitions [9]. In this method, the ab-parameter
plane is divided into regions, each of which contains an integer number of roots with Re(λ) > 0.
The regions are separated by partition curves on which roots cross the imaginary axis. The
general two delay problem was studied by Hale and Huang [18], who partitioned the τ1τ2-
parameter plane into regions containing an integer number of roots with Re(λ) > 0. Bélair
and Campbell [2] considered the case with a = 0 and found the stability region in the cτ2-
parameter plane after normalizing b = 1. Mahaffy, Zak, and Joiner [25] returned to the general
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case, after normalizing τ1 = 1, and determined instability surfaces in the abc-parameter space
as a function of delay τ2. Our characteristic equation is easy to analyze using a similar
approach; we divide the cb-plane into regions which contain a given number of roots, and we
do this for different values of γ.

In section 5.1 we show that the roots of the characteristic equation with Re(λ) > 0 (if
they exist) are located within a bounded domain in the complex plane. In section 5.2 we show
that if b+ c > 1, there is exactly one positive real root, and that if b+ c < 1, there are either
two positive real roots or zero positive real roots. We also derive a parametric expression for
the curve that separates the region of zero positive real roots from that of two positive real
roots. In section 5.3 we derive parametric expressions for the Hopf bifurcation curves in the
cb-plane on which the roots are purely imaginary, and we prove that bc < 0 is a necessary
condition for the existence of purely imaginary roots. By combining the real root case and
the imaginary root case we are therefore able to build a complete picture of the distribution
of roots in the cb-plane as we vary the value of γ ∈ (0, 1).

5.1. Complex roots. The most general solution of the characteristic equation (4.13) is
complex and takes the form

(5.2) λ = σ + iω,

where σ is the real part and ω is the imaginary part. Substituting into the characteristic
equation and separating real and imaginary terms lead to the set of equations

σ − b
(
1 − e−σ cos(ω)

)
− c

γ

(
1 − e−σγ cos(ωγ)

)
= 0,(5.3)

ω − be−σ sin(ω) − c

γ
e−σγ sin(ωγ) = 0,(5.4)

which must be satisfied simultaneously. The following theorem is proved below.
Theorem 5.1.
1. Assume that b < 0 and c < 0. Then there are no roots with σ > 0.
2. Assume that b > 0 and c < 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2b) × [−(b + |c|/γ), b + |c|/γ].
3. Assume that b < 0 and c > 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2c/γ) × [−(|b| + c/γ), |b| + c/γ].
4. Assume that b > 0 and c > 0. If a root with σ > 0 exists, then it is located within a

bounded region, namely, (σ, ω) ∈ (0, 2b + 2c/γ) × [−(b + c/γ), b + c/γ].
Proof. Assume that there is a root with σ > 0. Then the following inequalities are true:

0 < 1 − e−σ cos(ω) < 2,(5.5)

0 < 1 − e−σγ cos(ωγ) < 2,(5.6)

−1 < e−σ sin(ω) < 1,(5.7)

−1 < e−σγ sin(ωγ) < 1.(5.8)

First consider the case of b < 0 and c < 0. The inequalities and equation (5.3) imply that
σ < 0, which is a contradiction. Thus there are no roots with σ > 0 when b < 0 and c < 0.
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Figure 7. The zero contours of R(σ, ω) and I(σ, ω) are shown in red and blue, respectively. The intersection
points are solutions of (5.3)–(5.4). For b = −8, c = 2, and γ = 0.2 there are two complex conjugate roots with
σ > 0.

Consider now the case of b > 0 and c < 0. The inequalities and equations (5.3) and (5.4)
imply that

σ < 2b,(5.9)

|ω| ≤ b +
|c|
γ
,(5.10)

which shows that if a root with σ > 0 exists, then it is located within a bounded region in the
complex plane. A similar argument can be made for the case of b < 0 and c > 0 and for the
case of b > 0 and c > 0.

The solutions to the characteristic equation (4.13) may be visualized as follows. For a
given set of parameters b, c, and γ, the left-hand sides of (5.3) and (5.4) are functions of σ
and ω, and we will denote these functions as R(σ, ω) and I(σ, ω). The intersection of the zero
contours of both functions will be the roots of the characteristic equation. An example is
shown in Figure 7 for the values of b = −8, c = 2, and γ = 0.2. The roots of the characteristic
equation are clearly marked, and in this case there are two pairs of complex conjugate roots
with σ > 0. The root at (0, 0) is not a solution of (4.11) since b + c �= 1.

5.2. Real roots. We will search for real roots by looking for a solution of the form λ =
σ + i0, which leads to the simplified characteristic equation

(5.11) σ − b(1 − e−σ) − c

γ

(
1 − e−σγ

)
= 0.

The following theorem is proved below.
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Theorem 5.2.
1. If b + c > 1 there is exactly one positive real root.
2. If b + c < 1 there are either two positive real roots or none at all.

(a) The boundary that separates the regions of zero positive real roots from two positive
real roots is defined parametrically by

det = −1

γ
e−σ + e−σγ +

(1 − γ)

γ
e−σ(1+γ),(5.12)

b(σ) =
1

det

(
σe−σγ +

e−σγ − 1

γ

)
,(5.13)

c(σ) =
1

det

(
−σe−σ + (1 − e−σ)

)
,(5.14)

where σ ∈ [0,∞). This parametric curve requires bc < 0 and lies in the fourth
quadrant (for 0 < γ < 1).

(b) The boundary that separates the regions of two positive real roots from one positive
real root is defined by the line segment b + c = 1, with b < −γ/(1 − γ) and
c > 1/(1 − γ).

Proof. The proof of these results is straightforward and is accomplished mostly by curve
sketching. Roots of the characteristic equation (5.11) are given by roots of the function F (σ),

(5.15) F (σ) = σ − b(1 − e−σ) − c

γ

(
1 − e−σγ

)
.

The function F (σ) is continuous and has the following properties:

F (0) = 0,

lim
σ→+∞

F (σ) = +∞,

lim
σ→−∞

F (σ) = sign(b)∞,

F ′(0) = 1 − (b + c).

In each region of the cb-plane we can sketch the function F (σ) and determine the number of
roots. This is simple in the first, second, and third quadrants and confirms the theorem in
these regions. It is also unambiguous in the fourth quadrant with b + c > 1. However, in the
fourth quadrant with b + c < 1 the curves are ambiguous and it is helpful to reconsider the
original characteristic equation and write it in the form

(5.16) −σ + b +
c

γ
= be−σ +

c

γ
e−σγ .

The function on the left, which we denote as L(σ), represents a straight line of slope −1 and
intersects b + c/γ. The function on the right, which we denote as R(σ), represents a linear
combination of two different exponentials. We see that it has the same intersection at σ = 0,
and that R′(0) = −(b+ c). As σ → ∞ we see that R → 0 from above if c > 0 and from below
if c < 0 (remember that γ < 1). In addition, there exists one value of σ where R = 0 if and
only if −γb

c > 1. Finally, there exists one value of σ where R′ = 0 if and only if − b
c > 1.
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Figure 8. The functions L and R are shown in blue and red, respectively, at two points in the fourth
quadrant with b + c ≤ 1 and γ = 0.2. (a) There are no nonzero intersections of L and R for c = 3.5 and
b = −8. (b) There are two nonzero intersections of L and R for c = 5 and b = −8.

In the fourth quadrant with b+ c < 1 the function R(σ) may never intersect the line L(σ)
or it may intersect it twice. Typical curves are shown in Figure 8. In Figure 8a we plot L and
R as functions of σ in blue and red, respectively, for b = −8, c = 3.5, and γ = 0.2. Notice
that there are no nonzero intersections in this case (the intersection at σ = 0 is not a root of
(4.11) since b + c �= 1). Increasing the value of c to c = 5 leads to two nonzero intersections,
as shown in Figure 8b. The transition from zero to two roots takes place when the two curves
are tangent; this occurs when both the functions and their derivatives are equal:

b(1 − e−σ) + c
(1 − e−σγ)

γ
= σ,(5.17)

be−σ + ce−σγ = 1.(5.18)

This represents two linear equations in b and c which can be solved to give

det = −1

γ
e−σ + e−σγ +

(1 − γ)

γ
e−σ(1+γ),(5.19)

b(σ) =
1

det

(
σe−σγ +

e−σγ − 1

γ

)
,(5.20)

c(σ) =
1

det

(
−σe−σ + (1 − e−σ)

)
.(5.21)

Since we are searching for nonnegative roots we can assume that σ ∈ [0,∞) and these equations
therefore define a parametric curve in the cb-plane. In addition, applying l’Hôpital’s rule
demonstrates that

lim
σ→0+

b(σ) =
−γ

1 − γ
,(5.22)

lim
σ→0+

c(σ) =
1

1 − γ
,(5.23)

which is the point of intersection of the lines b + c = 1 and b = −γc and is in the fourth
quadrant for 0 < γ < 1. Moreover, it is true that limσ→∞ b(σ) = −∞ and limσ→∞ c(σ) = ∞
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Figure 9. The cb-plane is partitioned into three regions. In the blue region there are no real positive roots.
In the red region there is one real positive root. In the green region there are two real positive roots.

and that neither b nor c can ever become zero. The parametric curve is therefore located in
the fourth quadrant.

In Figure 9 we plot the cb-plane for γ = 0.2 as an example. The regions containing zero,
one, or two positive real roots are clearly marked. Let us define the b+ c = 1 line to be γ1 and
the parametric curve that separates the region of zero positive real roots from two positive
real roots to be γ2. For this value of γ, the point of intersection of γ1 and γ2 is (5/4,−1/4).

5.3. Imaginary roots. We search for imaginary roots by looking for solutions of the char-
actertistic equation of the form λ = 2iω. This particular choice leads to convenient algebra,
and the characteristic equation decomposes into

ω = b cos(ω) sin(ω) +
c

γ
cos(ωγ) sin(ωγ),(5.24)

0 = −b sin2(ω) − c

γ
sin2(ωγ).(5.25)

We prove the following theorem below.
Theorem 5.3. For any given value of γ ∈ (0, 1) there are an infinite number of Hopf bifur-

cation curves in the cb-plane on which there exists a purely imaginary root. These bifurcation
curves are denumerable and we will label them as Γj for j = 0, 1, 2, . . . . Each bifurcation
curve is defined on a finite, closed interval of the form [ωj , ωj+1]. The curve Γj is defined
parametrically by

b(ω) =
−ω sin(ωγ)

sin(ω) sin(ω(1 − γ))
,(5.26)

c(ω) =
ωγ sin(ω)

sin(ωγ) sin(ω(1 − γ))
(5.27)
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for ω ∈ [ωj , ωj+1] and is located in either the second or fourth quadrant. The endpoints ωj

and ωj+1 are found by sorting the roots of sin(ω), sin(ωγ), and sin(ω(1 − γ)) into ascending
order and choosing the jth and (j + 1)th roots, respectively. The Hopf bifurcation curve Γ0

is defined on [0, π], is semi-infinite, and originates from (−γ/(1 − γ), 1/(1 − γ)). All other
bifurcation curves are infinite.

Proof. Equations (5.24)–(5.25) define a linear system of equations in b and c which can
be solved to give (5.26)–(5.27). These are parametric equations in ω with bc < 0. There is a
new branch whenever one or more of the terms sin(ω), sin(ωγ), or sin(ω(1 − γ)) is zero. The
roots of these functions are kπ, lπ/γ, and mπ/(1 − γ), respectively, for integers k, l, and m.
Since we are considering γ < 1 the first two roots are ω0 = 0 and ω1 = π. The bifurcation
curve Γ0 is therefore defined for ω ∈ [0, π]. It is semi-infinite since

lim
ω→0+

b(ω) =
−γ

1 − γ
,(5.28)

lim
ω→0+

c(ω) =
1

1 − γ
,(5.29)

lim
ω→π−

b(ω) = −∞,(5.30)

lim
ω→π−

c(ω) = 0+(5.31)

and can be viewed as a continuation of the real root curve γ2. All other bifurcation curves
are infinite because of the linear dependence on ω in (5.26)–(5.27), even if there exist ω values
where all three functions are simultaneously zero. Since bc < 0 every bifurcation curve is
located in either the second or fourth quadrant.

In Figure 10 we plot the first few Hopf bifurcation curves in the cb-plane for γ = 0.2 as
an example. As expected from section 5.1, all of the Hopf bifurcation curves Γj lie in the
second and fourth quadrants where bc < 0. The first Hopf bifurcation curve, Γ0, always lies
in the fourth quadrant since γ < 1. The Hopf bifurcation curves Γj and the real root curves
γ1 and γ2 separate the cb-plane into distinct regions with different numbers of roots with
positive real part. Changing the value of γ changes the location of the curves Γj and γ2. For
small γ the curves start relatively close to the origin, while as γ → 1 the curves move off to
infinity. It is clear graphically that on every curve there exists a unique point which is closest
to the origin. In addition, it is also clear that the point closest to the origin lies on the first
bifurcation curve Γ0, but we have been unable to prove either of these results analytically. The
next section will demonstrate that this conjecture has important implications for the onset of
instability.

6. The onset of instability. The linear stability of the equilibrium solution to microvas-
cular blood flow in a two-node network is governed by the characteristic equation (4.13). In
the previous section we built a complete picture of the distribution of roots in the cb-plane
for different values of γ. In particular, we found parametric equations for curves in the cb-
plane that separated regions with different numbers of roots with positive real part—equations
(5.26)–(5.27). The question of stability of a given equilibrium state of the microvascular blood
flow model can now be answered as follows. Choose a set of network parameters. We can use
(3.8) to compute the equilibrium flow ratio Q∗. If we recall from section 4 the definitions of
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Figure 10. The cb-plane is partitioned into distinct regions with different numbers of real and complex
roots. In the blue region there are no real positive or complex roots with positive real part. In the red region
there is one real positive root. In the green region there are two real positive roots. In the yellow region there is
one pair of complex conjugate roots. In the magenta region there are two pairs of complex conjugate roots. In
the cyan region there is one real positive root and a pair of complex conjugate roots. In the white region there
are two real positive roots and a pair of complex conjugate roots.

b, c, and γ,

b = −HFQ
∗(1 −Q∗)f ′(Q∗)

μ′∗
A

μ∗
A

,

c = +HFQ
∗(1 −Q∗)g′(Q∗)

μ′∗
B

μ∗
B

,

γ =
Q∗

α(1 −Q∗)
,

then each set of network parameters will map to a point in the cb-plane defined by γ. The
system is stable or unstable depending on the location of the point.

The shortcomings of this approach are obvious; every point in network parameter space
potentially maps to a different point in a different cb-plane defined by a different value of γ.
While it is possible to use this approach to test the stability of a given network, this is all but
useless as a tool for finding unstable parameter values. If, however, we focus our attention on
the parametric models of (2.6) and (2.7), then b and c simplify to

b = −δHFQ
∗(1 −Q∗)f ′(Q∗),(6.1)

c = +δHFQ
∗(1 −Q∗)g′(Q∗).(6.2)

As in the section on equilibrium solutions, only four network parameters are required in order
to determine Q∗. These parameters are the length ratio lA/lB, the diameter ratio dB/dA, the
combined F̊ahræus–Lindqvist parameter δHF , and the plasma skimming parameter p.
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Figure 11. The partitioned cb-plane in Figure 10 is shown with the colors removed and the scale changed
for clarity. In addition, the parametric curve defined by (6.1)–(6.2) is shown for three different values of δHF .
In each case the curve is parameterized by Q∗ ∈ [0, 1], launches from the origin, moves in a counter-clockwise
direction, and ends at the origin. For δHF = 1 (red curve) and δHF = 3 (blue curve) the curve always remains
in the stable region, while for δHF = 6 (green curve) the curve crosses the first bifurcation curve Γ1.

In section 6.1 we show that it is possible to map the bifurcation curves to the (Q∗, δHF )-
plane for a fixed value of γ and p. In section 6.2 we consider the impact of changing γ, while
in section 6.3 we show that the bifurcation curves can be mapped to a variety of network
parameter planes. Finally, in section 6.4 we investigate the dependence on p, and we confirm
our predictions by direct numerical simulation in section 6.5.

6.1. The (Q∗, δHF )-plane. As a good example, let us choose p = 3 and γ = 0.2 and hold
these values fixed. Then (6.1)–(6.2) define a parametric curve in the cb-plane parameterized
by Q∗. The shape and size of this curve is influenced by the plasma skimming parameter p
(via f ′ and g′) and the combined parameter δHF . For given values of δHF and p, this curve
is continuous and closed and has clockwise orientation for Q∗ ∈ [0, 1].

In Figure 11 we show parametric curves in the cb-plane with γ = 0.2 and p = 3 for
δHF = 1, 3, 6. In each case, the curve originates from the origin at Q∗ = 0, intersects the
c = 0 axis where g′ = 0, intersects the b = 0 axis where f ′ = 0, and returns to the origin as
Q∗ → 1. Increasing δHF results in larger parametric curves with the same basic shape since
δHF is simply a linear scale factor in (6.1)–(6.2). Notice, however, that for δHF = 1 and
δHF = 3, the curve remains in the stable region while for δHF = 6 the curve passes into the
unstable region. There must therefore be a minimum value of δHF below which the system is
stable. For δHF slightly larger than this minimum value, there are Hopf bifurcations at the
two locations where the parametric curve crosses the first Hopf bifurcation curve. Increasing
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Figure 12. The partitioned cb-plane in Figure 10 is shown with the colors removed and the scale changed
for clarity. In addition, the parametric ray defined by (6.1)–(6.2) is shown for three different values of Q∗. In
each case the ray is parameterized by δHF ∈ [0,∞) and launches from the origin. For Q∗ = 0.05 (red ray) the
ray crosses into the single real root region for large enough δHF but never enters a region with a complex root.
For Q∗ = 0.15 (blue ray) and Q∗ = 0.25 (green ray) the ray crosses the first bifurcation curve Γ1 for large
enough δHF .

δHF would result in the parametric curve crossing into the one real root and two real roots
regions, respectively. For very large δHF it is possible for the parametric curve to cross other
Hopf bifurcation curves.

It is possible to map the real root curves γ1 and γ2 and the Hopf bifurcation curves into
the (Q∗, δHF )-plane using an alternative interpretation of (6.1)–(6.2). If we choose a value of
Q∗ and let δHF vary from 0 to ∞, then the parametric curve is simply a parametric ray with
slope

b

c
= −f ′(Q∗)

g′(Q∗)
.

In Figure 12 we plot three different rays for p = 3 and γ = 0.2. For small Q∗ there is an
intersection with γ1, but there may be no intersection with either γ2 or Γ0. For Q∗ larger
than some critical value, however, the parametric ray first intersects Γ0, then intersects γ2,
and then intersects γ1. This pattern continues as we increase Q∗ until the parametric ray no
longer intersects γ1. For even larger Q∗ the ray no longer intersects γ2, but it continues to
intersect Γ0 as Q∗ → Qg. Any ray may also intersect a higher order Hopf bifurcation curve,
but this occurs for much larger values of δHF since these curves are located farther away from
the origin.

The value of δHF at which any parametric ray crosses γ1 may be computed as follows.
Recall from section 5.2 that γ1 is defined by b + c = 1. Using the definition of b and c in



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

718 J. B. GEDDES, R. T. CARR, N. J. KARST, AND F. WU

Figure 13. The bifurcation curves and associated regions in the cb-plane are mapped to the (Q∗, δHF )-
plane. The boundaries between the regions are computed by determining, for a given value of Q∗, the value of
δHF for which the ray crosses the boundary curves of Figure 10. In the blue region there are no complex roots
with positive real part. In the yellow region there is one pair of complex conjugate roots with positive real part.
In the red region there is one positive real root, and in the green region there are two positive real roots.

(6.1)–(6.2) we can solve for δHF :

δHF =
1

Q∗(1 −Q∗)(g′(Q∗) − f ′(Q∗))
.

In Figure 13 we plot γ1 in the (Q∗, δHF )-plane for p = 4 and γ = 0.2. For small Q∗ the value
of δHF is very large. As Q∗ increases, the value of δHF decreases and then increases, reaching
an asymptote at the value of Q∗ where g′(Q∗) − f ′(Q∗) = 0.

The value of δHF at which any parametric ray crosses Γ0 may be computed by using the
definition of the Hopf bifurcation curves, equations (5.26)–(5.27). A ray from the origin to a
point on any Hopf bifurcation curve has slope

b

c
= − sin2(ω∗γ)

γ sin2(ω∗)
.

Recall from section 5.3 that the first Hopf bifurcation curve, Γ0, is defined for ω ∈ [0, π]. For
a given value of Q∗ we can compute the value of ω∗ ∈ [0, π] which results in identical slopes.
The coordinates of a Hopf bifurcation point on Γ0 can then be computed by solving

−ω∗ sin(ω∗γ)

sin(ω∗) sin(ω∗(1 − γ))
= −δHF f

′(Q∗)Q∗(1 −Q∗)

for δHF . A similar calculation can be made in order to map γ2 onto the (Q∗, δHF )-plane.
In Figure 13 we also plot γ2 and Γ0 in the (Q∗, δHF )-plane for p = 4 and γ = 0.2. Notice
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Figure 14. The first Hopf bifurcation curve Γ0 is shown for different values of γ. The line b + c = 1 is
shown (in black) as well as the parametric curve for p = 4 and δHF = 3.4 (also in black). For very small γ
(red), the bifurcation curve Γ0 starts close to (1, 0) but never crosses the parametric curve. For an intermediate
value of γ (blue), Γ0 crosses the parametric curve twice. For a larger value of γ (green), Γ0 starts too far from
the origin to be able to cross the parametric curve.

that there is a critical value of Q∗ which results in a minimum value of δHF below which the
system is stable. As we increase δHF above this minimum value, there exists an interval of
Q∗ for which the system is unstable.

6.2. Changing γ. We have so far focused our attention on an arbitrary value of γ for
the sake of clarity. As indicated in section 5.3, changing γ results in the Hopf bifurcation
curves moving in the cb-plane. In Figure 14 we show a fixed parametric curve with p = 4 and
δHF = 3.4 in the presence of Hopf bifurcation curves for several different values of γ. We plot
only the first Hopf bifurcation curve Γ0 for clarity. For γ = 0.01 the Hopf bifurcation curve
begins close to (1, 0), and b decreases so rapidly that it does not intersect the parametric curve.
As γ increases, the Hopf bifurcation curve begins further from the origin, but b decreases less
rapidly. Intersections are therefore possible, which is precisely the case when γ = 0.1. For
larger γ, b decreases less rapidly still, but the Hopf bifurcation curve begins so far from the
origin that intersections are impossible as shown for γ = 0.4. There are no further intersections
for increasing γ.

As indicated earlier, there is a minimum value of δHF at which we cross the first Hopf
bifurcation curve Γ0. This minimum value δHmin

F depends on the value of γ. By repeating
our previous calculation, we can extract δHmin

F for each value of γ. In Figure 15 we show the
results of this computation for p = 4. For very small γ the minimum value of δHF is very
large. As γ increases, the minimum value decreases to a global minimum and then increases
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Figure 15. The minimum value of δHF is shown versus γ for p = 4. In the gray region the parametric
curve defined by (6.1)–(6.2) is guaranteed to cross the first Hopf bifurcation curve Γ0. In the white region there
are no such crossings and the system is stable.

again. We will denote this minimum value as δHc
F , the critical value of δHF below which

the system is stable for any value of γ. For p = 4 the value of δHc
F = 3.2709. The system

is guaranteed to be stable if δHF is less than this value. On the contrary, there exists an
unstable set of parameters if δHF is larger than this critical value.

6.3. Network parameter planes. Let us now choose a value of δHF greater than the
critical value, say, δHF = 3.4. In Figure 16 we plot the region of instability in the (γ,Q∗)-
plane by drawing a Hopf bifurcation contour at δHF = 3.4 for p = 4. This contour is a simple
closed curve for the following reason. Figure 15 shows that there is an interval of γ for which
the system is unstable. In addition, Figure 13 shows that for a given value of γ there is an
interval of Q∗ for which the system is unstable. Combining both of these findings implies that
the Hopf bifurcation curve Γ0 is a simple closed curve in the (γ,Q∗)-plane. As we increase
δHF , the simple closed curve grows and evolves.

Every point on the Hopf bifurcation curve in Figure 16 has coordinates (γ,Q∗). Since
p = 4 and δHF = 3.4, there are only two network parameters undetermined—the length ratio
lA/lB and the diameter ratio dB/dA. However, we have two equations—the definition of the
steady state Q∗, (3.8), and the definition of γ, (4.12). Using these equations we can solve for
unique values of the length and diameter ratios for every point on the Hopf bifurcation curve
Γ0. The result is a simple closed curve in the (lA/lB, dB/dA)-plane as shown in Figure 17.
The Hopf bifurcation curve emerges at approximately (16.5, 1.8) as δHF exceeds the critical
value of 3.2709. Notice that the instability region is quite narrow for δHF close to the critical
value; as δHF increases, the size of the unstable region also increases.
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Figure 16. The first Hopf bifurcation curve maps to a closed curve in the (γ,Q∗)-plane for p = 4, δHF =
3.4. In the gray region the system is unstable to a Hopf bifurcation. In the white region it is stable. For larger
values of δHF the gray region moves and expands.

Figure 17. The first Hopf bifurcation curve also maps to a closed curve in the (lA/lB , db/dA)-plane for
p = 4, δHF = 3.4. The system is unstable to a Hopf bifurcation in the gray region and is stable otherwise. As
δHF increases the unstable region moves and expands.

6.4. Changing p. The discussion so far has focused on determining unstable network
parameters for a single value of p. If we change the value of p we change the shape of the
parametric curves. In Figure 18 we show the parametric curves in the cb-plane (γ = 0.2) with
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Figure 18. The cb-plane with the bifurcation curves and three different parametric curves is shown for
γ = 0.2, δHF = 3. The parametric curve grows as p is increased until for a sufficiently large value it crosses
into the unstable region (green).

δHF = 3 for p = 2, 4, 6. Notice again that as p increases the curve grows in size. For p = 2 and
p = 4 it remains in the stable region, while for p = 6 the curve crosses the Hopf bifurcation
curve Γ0.

All of the previous computations can be repeated for any value of p. In particular, for
every value of p there is a critical value of δHF below which the system is stable. In Figure 19
we plot the critical value of δHF as a function of p. This curve separates a region of stability
from a region of instability. It is important to note that a point in the unstable region will
have associated with it a region of instability in the (γ,Q∗)-plane and a corresponding region
of instability in the (lA/lB, dB/dA)-plane. Close to the instability boundary the regions of
instability are quite small, as shown previously in Figures 16 and 17. As we move further into
the unstable domain, the instability regions grow and the other Hopf bifurcation curves and
the real root curves γ1 and γ2 can come into play. We have not explored the regions far from
the instability boundary for reasons that will become clear in section 7.

6.5. Numerical confirmation. We have confirmed these predictions by direct numeri-
cal simulation of the governing equations (3.1)–(3.2), along with the constitutive relations
(3.3)–(3.5) and boundary conditions (3.6)–(3.7). We have used a variety of algorithms, in-
cluding the upwinding convection scheme and the second-order Lax–Wendroff method [1].
While the accuracy of the schemes depends on the choice of space- and time-step, all of the
schemes used have agreed with the theoretical predictions on instability. This, along with
previous studies [21, 4, 5], makes it clear that the fluctuations are not a result of numerical
instability.
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Figure 19. For every value of p there exists a critical value of δHF below which the system is stable. For
values of δHF greater than this critical value (gray region), there exists a domain in parameter space (similar to
Figures 16 and 17) for which the system is unstable. This unstable domain grows in size as you move further
into the gray region.
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Figure 20. Direct numerical simulation of (3.1)–(3.2). The system is initiated close to steady state and
parameter values are chosen in the unstable domain. (a) The flow Q(t) as a function of time demonstrating
instability to a Hopf bifurcation with a growth rate close to that predicted by analysis. (b) A close-up of the
oscillation showing that the period matches that predicted by analysis.

In Figure 20a we plot the flow as a function of time. We used the following parameter
values: lA/lB = 20, dB/dA = 1.8, p = 4, and δHF = 3.4. At these parameter values the
equilibrium solution is Q ≈ 0.2672, which implies that γ ≈ 0.0591. These parameter values
place us in the unstable regions of Figures 16, 17, and 19. For these parameter values, there
is a pair of complex conjugate roots of the characteristic equation with real and imaginary
components σ ≈ 0.1728 and ω ≈ 4.883. Recall that we scaled λ by 1/τ in section 4. Undoing
these scalings predicts a growth rate of approximately 0.046 and an oscillation period of
approximately 4.82. Initially, we filled the vessels with hematocrit very close to the appropriate
steady state values. We see from Figure 20b that the oscillation period is very close to that
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Figure 21. A preliminary bifurcation diagram for changing diameter with p = 4, δHF = 3.4, and lA/lB =
20. A periodic solution is initially obtained with dB/dA = 1.8, and the maximum and minimum values are
shown in blue and red, respectively. The diameter ratio is then increased in increments of 0.005, the simulation
is continued until the transients die off, and the minimum and maximum values are again recorded. This is
repeated by decreasing the diameter ratio in increments of 0.005. The equilibrium solution is shown for reference
in black.

predicted by linear stability analysis.
We have also confirmed the existence of a finite region of instability in the (lA/lB, dB/dA)-

plane by continuing the simulation for various values of dB/dA. In Figure 21 we plot the
maximum and minimum values of the periodic solution as dB/dA is varied. The branch of
periodic solutions is created by starting at dB/dA = 1.8 and then continuing the resulting
periodic solution by increasing and decreasing dB/dA. The periodic solution emerges and
vanishes at values of dB/dA which agree well with those predicted in section 6.2, and Figure 21
also suggests that the Hopf bifurcations are supercritical. We have not explored the nonlinear
dynamics in detail but plan to in the future.

7. Conclusions. Numerous experimental studies have demonstrated that oscillations in
microvascular blood flow are ubiquitous. While fluctuations in blood hematocrit and velocity
are usually identified with biological control mechanisms such as vasomotion, there is evidence
that oscillations may be possible in the absence of biological control. In a previous paper [5] we
identified the simplest possible network, the two-node network, that could exhibit oscillatory
dynamics, and we found and interpreted the three dimensionless parameters b, c, and γ which
govern the stability of equilibrium.

In this paper we develop a complete description of the roots of the characteristic equation
and their dependence on the three dimensionless parameters. We show that there exists an
infinite number of Hopf bifurcation curves in the cb-plane for a given value of γ. Using simple
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Figure 22. The three-node network consists of two inlets and one outlet. One of the inlet nodes is converg-
ing, while the other is diverging. The flow in the middle branch could be in either direction.

parametric models for the F̊ahræus–Lindqvist effect and the plasma skimming effect, we map
the bifurcation curves to the network parameter plane, (lA/lB, dB/dA). For a given value
of the plasma skimming parameter p we demonstrate that there is a critical value of the
F̊ahræus–Lindqvist parameter δ for instability. We also show that above this threshold value
there exists a finite region of instability in the (lA/lB, dB/dA)-plane, and we confirm these
predictions with direct numerical simulation.

It is worth noting that we do not pretend that the simple parametric models provide a
realistic model for microvascular blood flow. Rather, we have used these models to provide
insight by making the analysis tractable. There is still some question as to the possibility of
instability if we use the more realistic models of Pries et al. The major difficulty is that there is
no easy way to map from the five-dimensional network parameter space, HF , dF , dA, dB, lA/lB,
to the three-dimensional dimensionless parameter space, b, c, γ. For a given set of network
parameters it is simple to compute b, c, and γ and therefore determine whether the network
is stable or unstable. This, however, is a rather unwieldy and unsatisfying method given the
size of the five-dimensional parameter space. Our results to date indicate that instability is
unlikely using the models of Pries et al., but we have no proof of this conjecture.

Even if oscillations are possible in the two-node network, the regions of instability in the
network parameter space are likely to be very small. This makes the likelihood of confirming
these predictions experimentally very remote. However, this parametric study does suggest
several alternatives. As demonstrated by Kiani et al. [21] and Carr and LeCoin [4], oscillations
are possible in larger networks. With a detailed understanding of the instability in hand, we
can pursue the validation of this work in slightly larger networks. For example, we have
preliminary evidence that the three-node network shown in Figure 22 has a much larger
region of instability. A careful analysis of this network might pave the way for an in vitro
experimental verification of these predictions.

Alternatively, we could explore other networks that are described by similar governing
equations. While it is potentially difficult to find an analogy with both flow and hematocrit
equivalents, we can reformulate our model into a single integral equation for the flow alone as
follows. The resistance in any vessel depends on the average hematocrit H̄i in vessel i. Since
the hematocrit at any point in the vessel is determined by the inlet hematocrit at an earlier
time, we can write the average hematocrit as

(7.1) H̄i(t) =
1

li

∫ t

t−τi(t)
Hi(0, s)vi(s) ds,
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where li is the length of the vessel and vi(t) is the speed of flow in the vessel at time t. The
time delay τi(t) is determined implicitly by the threshold condition,

(7.2)

∫ t

t−τi(t)
vi(s) ds = li.

In the two-node network the flow Q(t) is governed by (3.3),

(7.3) Q(t) =
RB(H̄B(t))

RA(H̄A(t)) + RB(H̄B(t))
,

which can now be viewed as an integral equation with two state-dependent delays since the
entrance hematocrit, Hi(0, t), is a function of the flow Q(t) via the plasma skimming effect.
Electric circuits provide an obvious analogy and may be worth investigating. In particular,
the steady state IV -characteristic of a transistor can display snapback [34], which beautifully
mimics the flow-pressure characteristic of blood flow in the two-node network. We hope to
pursue both avenues of research in the near future.
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