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Preface

It is safe to say that the world as we know it could exist without modern commu-
nication systems. But from online credit card transactions to secure messages
between organizations and their agents, these technologies allow us to trust
each other in an increasingly digital world. In these notes, we will begin to un-
pack these technologies, from both mathematical and practical perspective. You
will have the opportunity to implement many of these communication protocols
yourself, and in so doing, hopefully gain a deeper understanding and apprecia-
tion for the underlying ideas. We will regularly confront the ethical issues that
arise at the interface of these theoretic tools and their real world implementa-
tion, as the use and abuse of modern cryptography has serious implications for
the trajectory of our society.

How To Use These Notes

Content areas are intended to be relatively stand-alone. Each content area
discusses the overall idea behind the topic, and then proceeds to Matlab im-
plementation. (While I have not thoroughly tested it, Octave should work as a
good substitute.) Each content area has associated studio problems located in
Appendix A. These problems are intended to be started in class with the help of
an instructor and completed outside class. The solutions for studio problems are
located in Appendix B. Teaching notes for instructors, including learning ob-
jectives and discussion questions where appropriate, are including in Appendix

C.
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Chapter

Introduction

Cryptography is just one of a collection of technologies that allows us to com-
municate with one another in a digital world. In fact, these technologies can be
abstracted outside the digital context into a so-called “communication system.”
This theoretic object is helpful in allowing us to examine what we consider
important in a communication scheme and how these various important pieces
might fit together. The general communication systems also give us the oppor-
tunity to introduce some important archetypical characters, namely Alice, Bob,
and Eve, into our vocabulary.

In both the classical and modern cryptosystems that we will study, you will
have the chance to implement the system itself and a successful attack on that
system, when one exists. This implementation is incredibly helpful, as it allows
us to see the details of a particular system in action. These exercises do require
some experience programming. We’ll assume here that the typical student has
no prior knowledge. We'll begin with some general examples and move into
more cryptographic applications as we gain confidence.
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1.1 Communication Systems

The hardware and software components of communications systems are knit
together by deep and fascinating mathematics. In the most general framework,
we consider one party, traditionally named Alice, who wants to send a secret
message to another party, traditionally named Bob. Alice can only communi-
cate to Bob through a noisy public channel (e.g., postal service, hardwired
connection, radio, Wifi) which is monitored by an eavesdropper, traditionally
named Eve, who “hears” everything that Alice says to Bob. In a full communi-
cation system, there are three main processes that are completed before Alice
transmits her message to Bob: compression, encryption, and protection as
seen in Figure 1.1. This conceptual framework was formalized by Claude Shan-
non and Warren Weaver in the mid-1940s. Shannon went on to develop the
field of information theory, an enormously important subject which today
encompasses all compression, encryption, and protection technologies.

Compress || Encrypt |—{ Protect

Eve Channel

Bob Decompress |«—{ Decrypt le— Correct -

Figure 1.1: General communication system with Alice sending a message to Bob
through a public channel monitored by Eve.

1.1.1 Compression

In order to save time and energy, Alice typically wants to send as short a message
as possible while getting her point across. She can use a suite of mathematical
techniques broadly called “compression” to make her message as small as possi-
ble while retaining most or all of its meaning. For instance, if Alice were trying
to send the message “Let’s meet together tonight at 9 o’clock on the Boston
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Common. Looking forward to seeing you then!”, a very simple compression
scheme would reduce this message to “Meet tonight nine pm Boston Common.”
While perhaps not as polite, this new message certainly conveys the same basic
idea as the original. You can imagine that compression techniques get quite a
bit more complicated than this small example, but the idea is still the same:
remove redundancy from the message.

Example 1.1.1. Imagine a census agent wants to transmit the aggregate gen-
ders she counted in a particular day. The list reads

M, F, M, F, F, F, N, M\, M, ..., F

There are 505 females (F), 490 males (M), and 5 individuals who preferred not
to respond (N) in the sample. How might she compress her message?

Rather than send 1,000 different characters, the census agent might send
something like 505F, 490M, 5N. Notice that she could have also sent the groups
in a different order without changing the message.

1.1.2 Encryption

Since Alice wants her message to Bob to be secret, she somehow needs to make
the message she sends across the public channel unintelligible to everyone but
Bob. She can accomplish this with a number of mathematical techniques broadly
termed “encryption.” An encryption technique matches each character in the
original message (called the plaintext in encryption protocols) into a unique
character in the encrypted message (called the ciphertext in encryption pro-
tocols). As far as displaying these messages, the traditional approach is to

e Use only capital letters
e Ignore punctuation and other non-alphabetic characters

e Group characters in small sets in order to minimize human errors in pro-
cessing

We will ask ourselves how our cryptographic tools would have to change if we
ignored some or all of these bullet points, but for now, let’s stick to the easier
case.

Example 1.1.2. Suppose Alice and Bob could have agreed that an A in plaintext
will become a B in the ciphertext. Similarly, a B would turn into a C, and so on.
Using the display conventions laid out above, Alice’s compressed message “Meet
tonight nine pm Boston Common” would read

MEETT ONIGH TNINE PMBOS TONCO MMON

Using the encryption scheme outlined above, Alice’s message would be trans-
formed in the following way:

NFFUU POJHI UOJOF QNCPT UPODP NNPO



Chapter 1. Introduction

While this ciphertext looks like complete gibberish, both Alice and Bob know
that a meaningful message lies underneath. But what about our eavesdropper
Eve? We could assume that she knows nothing about how Alice and Bob have
decided to encrypt their messages. This approach is called secrecy through
obscurity; Alice and Bob keep everything about their encryption scheme secret,
and in that way keep Eve from deciphering their messages. The issue here is that
if Eve somehow manages to get an idea of how the message is being encoded,
then Alice and Bob will underestimate her capabilities, which is in general a
very bad thing to do to an adversary. Instead we typically follow Shannon’s
maxim (also called Kerckhoff’s law) which says in short “The enemy knows
the system.” In more detail, we assume that Eve knows everything about how
the message was encrypted except for a special piece of secret information call
the key. In Example 1.1.2 for instance, we assume that Eve knows that Alice
and Bob are encrypting by substituting one letter for another, but that she does
not know the secret substitution rule. If Eve wants to break the code, she needs
to figure out, in one way or another, what the substitution rule is. Both the
encryption process, called cryptography, and the breaking of ciphers, called
cryptanalysis, are huge fields, each with their own beautiful and powerful
results. We will discuss both in the context of several cryptosystems in these
notes.

1.1.3 Protection

The final step Alice performs before transmission is protection. The public chan-
nel across which Alice and Bob communicate is a noisy place. We assume that
Alice and Bob are not the only pair of people trying to communicate over this
space. Moreover, many channels have inherent background noise that makes
hearing and understanding a message difficult. For a physical example, imagine
Alice is trying to tell Bob a secret in a crowded restaurant. Other pairs of people
are talking, there’s noise from the kitchen, and the music playing is drowning
out much of the conversation. What can Alice do to get her message across?
She could talk louder. Or perhaps she could repeat herself several times, in the
hopes that Bob could piece together her meaning. We’ll see that these are only
two of the most basic attempts at message protection. There are sophisticated
mathematical techniques that allow Alice to systematically introduce extra in-
formation into her message so that Bob will be able to reconstruct her meaning,
even if some of her message is corrupted during transmission.

1.1.4 Representations of Data

In the classical cryptosystems discussed in Chapter 2, messages are traditionally
represented in uppercase letters without any spaces, punctuation, or other non-
alphabetic characters. In many cryptosystems, however, it is convenient to be
able to perform arithmetic operations when turning plaintext into ciphertext.
This necessitates a consistent method for converting numbers to letters. The
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most straightforward is to associate the 26 letters in order with the numbers 0,
1,...,25:

A0, B<1l, C«2,...,Z < 25.

It may seem more natural to begin number at 1 instead of 0, but we’ll see over
the course of our investigations that the presence of zero is extremely useful,
and indeed necessary, in many cryptosystems. We can therefore think of strings
of characters and arrays of numbers interchangeably and will frequently do so
without further mention. Rectangular arrays of numbers with either one row or
one column are called vectors. A rectangular array with r rows and ¢ columns
is called an r X ¢ matrix. Vectors are a subset of matrices in the same way that
squares are a subset of rectangles. We will often think of messages in terms of
both vectors and matrices.

Example 1.1.3. The following array of characters and the numerical vector
are equivalent:

ZEBRA <> [25 4 1 17 0)].

Example 1.1.4. The following array of characters and the numerical matrix
are equivalent:

L O 11 14
<~
V E 21 4

In the modern cryptosystems discussed in Chapter 3, messages are tradi-
tionally represented by strings of Os and 1s. Each 0 or 1 is called a bit (a
contraction of the phrase “binary digit”). We can represent text as a bit string
by representing each character as itself a bit string and then concatenating, that
is appending one after the other. Perhaps the most popular way to accomplish
this conversion is the ASCII (American Standard Code for Information Inter-
change). The ASCII “alphabet” is extensive. For instance, the ASCII bit string
for the letter A is 1000001, the ASCII bit string for the letter a is 1100001, and
the bit string for the character ! is 0100001. For a full list, check out the ASCII
Wikipedia page (click here).

The good news is that we rarely have to deal with this conversion explicitly.
Almost always it is enough to know that we can convert any string of characters
into a unique string of bits, and vice versa. We can therefore think of encod-
ing just the bits themselves, and leave the worrying about the conversion to a
computer. We’ll discuss this paradigm in much more detail at the beginning of
Chapter 3.


http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
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1.2 Matlab

Matlab is an industry-standard computational package developed by Math-
Works. In this section, we will cover some core computer programming ideas
and their corresponding implementation in Matlab.

1.2.1 Basic Arithmetic

At its most basic, Matlab is a high powered calculator. For instance, if we enter
1 + 2 in the command line, we observe

> 1 + 2
ans =

3

Sometimes we don’t want to show the output of a particular computation. We
can suppress the output by appending a semicolon:

>> 1 + 2
>>

Note that Matlab has still performed the computation; it just hasn’t shown us
the results. Basic arithmetic works much the way you’d probably expect, with
+, =, /, *, and ~ all performing their traditional roles.

1.2.2 Variable Assignment

We often need to use the result of a computation for some other purpose. We can
store the results of a computation using variable assignment. An assignment
always has the form

variable name = variable value.

We assign the value on the right of the equals sign to the variable name on the
left of the equals sign. For example,

> x =1+ 2;
>> x

3

The variable x now has value 3 and will continue to have this value until we
overwrite it or clear it.

Variable assignment can produce expressions that might not make sense at
first look. For instance, consider
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> x =1+ 2;
>> x = 2%x;

The last line seems strange from a mathematical perspective. If we consider this
to be an equation, there is only one value of x that satisfies the constraint. But
this is not an equation! It’s a variable assignment! So we take the value on the
right side of the equals sign and assign it to the variable name on the left side
of the equals sign. After the first line executes, we have x = 3. The value on
the right side of the equals sign on the second line is therefore 6. So the second
line actually overwrites the old value of x with a new value of 6. While these
types of assignments are perfectly legal, and in some cases desirable, they can
also easily confuse people who are trying to read your code. Be careful using
them.

1.2.3 Arrays

One of the strongest aspects of Matlab is that it can deal with arrays and
matrices very efficiently. We can generate arrays very simply.

> a = 1:5

1 2 3 4 5
Notice that we could’ve arrived at the same result by entering
> a=1[1, 2, 3, 4, 5];
We can see that a is a 1 x 5 matrix, also called a row vector.

>> size(a)
ans =

1 5

To see exactly what the size function is telling us, we can type “help size”
in the command line.
We could turn a into a column vector b by appending a single apostrophe.

>> Db = a’

b =

O W N
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This operation is called the matrix transpose, and it serves to turn the rows of
one matrix into the columns of another, and vice versa. Notice that we could’ve
arrived at the same result by entering

>> b = [1; 2; 3; 4; 5];
Here, the size function gives

>> size(b)
ans =

5 1

Notice that now our vector has r = 5 rows and ¢ = 1 column. Using the
@,

character “;” when defining a matrix or vector tells Matlab to start a new row.
The size function is similar to the numel function.

>> numel (a)
ans =

5

Here Matlab returns the total number of elements located in a vector or matrix.

Matlab gives us easy way to access just part of the vector a. Matlab begins
indexing the first element in any array as 1. We could access elements 1 through
3 (line 1 below), elements 2 to 4 (line 2 below), or elements 2 all the way to the
end of the vector (line 3 below), or just the fourth element (line 4 below).

>> a(1:3);
>> a(2:4);
>> a(2:end);
>> a(4);

This type of operation is known as slicing the vector. Matlab also allows us to
perform arithmetic on arrays. For instance,

>> 2%a;
>> at+bh;

both perform the computations you’d expect. We need to be a little more careful
with multiplication, however.

>> axa
7?77 Error using ==> mtimes
Inner matrix dimensions must agree.

As we’ll see, matrix and vector multiplication have their own definitions; unlike
real or complex numbers, not any two vectors can be multiplied together. Notice
that multiplying an vector by a number (also called a scalar) was no problem;
it’s only matrix-matrix operations that can get tricky.
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1.2.4 Scripts and Functions

In Matlab, there’s no way to save your work if you're working from the command
line. The good news is we can package a series of commands into a file called a
script, save it, and run it at any time in the future. To open a blank file, either
go to File > New > M-File or press CTRL+N. The commands we enter into the
script are exactly the same as if we were entering them into the command line.

For more complex tasks, we need multiple pieces of code that work together.
If we put these code chunks all together, things could get confusing. Instead, we
separate out blocks of code that perform specialized operations into functions.
The Matlab syntax that defines a function is

function return_variable = function_name(argumentl, argument?2,
operations

return_variable = some_expression
end

The function function_name will accept the inputs, also known as arguments,
and return the value of the variable return_variable.

For an example, imagine we wanted to define a function that takes two inputs
z and y, and produces a number z according to z = 22 + % 4 2xy. Our function
might look like

function z = ourFirstFunction(x,y)
zZ = X2 + y72 + 2%x*y;
end

For our purposes, we will always have just one function per file. The file
name and the function name should match.

1.2.5 Loops

Suppose we wanted to print the numbers from 1 to 100. We could enter one
command for each of the 100 numbers, but this seems repetitive. This type of
repetition comes up a lot in programming, and computer scientists have given
us structures called loops to help with automating these tasks. The simplest is
the for loop. For instance, the for loop that would print the numbers 1 to 100
reads

for i = 1:100
i
end

In words, this loops reads, “For i equals 1 to 100, perform the operations
in the middle of the loop.” Here the operation is just to print i, but you can
imagine plenty of more complex scenarios.

Matlab’s designers have also given us ways to perform different operations
in different circumstances. Consider the following extension of our for loop.

., argumentN)
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for i = 1:100
if i < 25
’small’
elseif i >= 26 & i < 75
’medium’
else
’large’
end
end

Let’s examine this loop piece by piece. First, we see that the loop will
increment i from 1 to 100, executing all the commands in the middle before
moving on to the next value of i. Inside the loop, we see an if statement, which
allows us to choose a single block of code to execute depending on conditions
that we set. The command below the if is executed if and only if the if
statement is true. For instance, here the word small will print if and only if i is
less than 25. If this happens, the whole if statement is complete, and the for
loop proceeds on to the next value of i. If it does not happen, then we continue
to the elseif statement.

If we reach the elseif statement, we will print the word medium if and only
if 1 is greater than or equal to 25 and less than 75. If this happens, the whole
if statement is complete, and the for loop moves on to the next value of i. If
we do not print medium, we move on to the else statement. If we reach the
else statement in an if statement, we automatically execute the code between
else and end. We can think of else as meaning, “if everything else has failed,
do the following. ..”

Loops and conditional statements alone allow us to develop powerful tech-
niques for solving complex problems. Other computer science topics will be
introduced as needed throughout the text.

1.2.6 Provided Functions

There are several specialized Matlab functions bundled with these notes. Below
is a short description of each. In order to learn more about one of these functions
(or any other function) in Matlab, type help followed by the function name to
get a short description.

e frequency: computes the relative frequency of upper-case characters in a
string

e friedman: performs Friedman analysis for polyalphabetic cryptanalysis

e lettersToNumbers: converts uppercase letters to numeric values; works
only on strings of characters

e loadText: loads text from and convert to a numeric vector

e modInv: computes the multiplicative inverse of x modulo n if one exists
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numbersToLetters: converts numeric values to uppercase letters; works
for both vectors and matrices

ord: computes the multiplicative order of x in Z,,

powMod: computes the 2¥ mod n in a way that can handle large values of
x and y

preprocessText: removes all non-alphabetic characters from the input
text, and convert all letters to uppercase

shaO: a truncated version of the defunct SHA1 cryptographic hash; re-
turns a 16 bit digest

totient: computes Euler’s totient function ¢(n)
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Chapter

Classical Cryptosystems

Classical cryptosystems are designed to disguise plaintext composed of alphanu-
meric characters. These technologies have been employed in one form or another
for much of recorded history. As cryptanalytic technology has evolved, so too
have encryption methods. At this point, there are dozens of different variations
of the common themes of transposition, forming a ciphertext by rearranging the
letters in the plaintext, and substitution, forming a ciphertext by substituting
one letter for another. We will investigate a sample of these methods, highlight-
ing the strengths and weaknesses of each. This discussion will lead us naturally
to the modern cryptosystems discussed in Chapter 3.

13
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2.1 Transposition Ciphers

Transposition ciphers were modern technology nearly over 2700 years ago, when
the Greeks used specialized rods called scytales (which rhymes with “Italy-s”)
for quick enciphering and deciphering. Alice and Bob would begin with identical
syctales. Alice would wind a strip of writing material around her scytale and
begin writing her message left to right along the rod. An example of this process
using the plaintext “Cryptology is awesome” can be seen in Figure 2.1.

C R\Y P T
O |G ]Y I S
E S O/ M/ E

O\ L
Al W

Figure 2.1: Example of transposition encoding on a scytale. Typically the
message would wind all the way around the scytale; forced perspective is used
here for clarity.

The plaintext makes perfect sense when it is wound around the scytale.
When Alice unwinds the leather strip, however, the text is suddenly unintelli-
gible as seen in Figure 2.2.

c O ERGSYY OWPI MT S E OA L W

Figure 2.2: Leather message strip from Figure 2.1 unwound from the scytale.
Blank spaces towards the end of the strip correspond to the blank spaces at the
bottom right of Figure 2.1.

To decode the ciphertext, Bob need only wrap the leather strip around his
identical scytale and read the letters off left-to-right. Notice if the two scytales
were different sizes, the letters would not line up correctly.

2.1.1 Scytales to Matrices

We can bring this sort of encoding into a more modern framework. Alice and
Bob first agree on a number k, called the key, which serves the same role as the
scytale: a shared secret between Alice and Bob. Alice then writes her plaintext
in a rectangular array with k rows. If n is the length of the plaintext, this implies
there are ¢ = [n/k]| (read “ceiling of n/k”, and mathematically defined as n/k
rounded up) columns in the matrix. For instance, Alice’s plaintext “Cryptology
is awesome” has length n = 19. And if, for instance, Alice and Bob agree on
the key k = 3, then Alice’s rectangular array will have ¢ = [19/3] = 7 columns:
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CRYPTOL
O0GYISAW
ESOME

Notice that the relative placement of all the characters are the same as if Alice
had written her message using a scytale as in Figure 2.1. Alice then constructs
the ciphertext by reading off the columns of the matrix. There’s one detail that
needs to be addressed: what to do with the empty positions in the bottom right
corner of the rectangular array. Here, Alice needs to pad her message with extra
characters in order to fill out the array. Any characters will do, and Alice will
trust that Bob will be able to recognize that the final characters is unnecessary
once he reconstructs the plaintext. If we were to pad the bottom right-hand
positions with Z, the ciphertext would read

COERG SYYOP IMTSE OAZLW Z

Notice that this is identical to the ciphertext in Figure 2.2, expect that the
blank spaces in Figure 2.2 are occupied by Alice’s padding character Z.

In order to decipher the ciphertext Alice has given him, Bob first constructs
his own blank rectangular array. He knows the secret number k, which dictates
the number of rows in the matrix. He can also knows that he must have ¢ =
n/k columns, where here n is the length of the ciphertext. (Notice the ceiling
function is gone here, because Alice’s padding has insured that the ciphertext
length n is divisible by k.) Bob then reads off the rows of his array to recover
the plaintext.

Let’s think about what the eavesdropper Eve can get out of this transaction.
We assume that Eve has somehow intercepted the ciphertext. But Eve does not
know the secret key k. In terms of the deciphering process, Eve does not know
how many rows she should have in her matrix. Her only resort is to guess-and-
check using different keys. Performing this process by hand could take quite a
while, but a computer can easily chew through thousands of possible keys in a
very short amount of time.

2.1.2 Encryption in Matlab
Let’s say we have our message in an array of characters. For instance,
plaintext = ’CRYPTOLOGY IS AWESOME’

Let’s assume that Alice and Bob have decided on key k& = 3. Alice first pads
her message so the total length is (evenly) divisible by 3.

plaintext = ’CRYPTOLOGY IS AWESOMEZZ’

Alice wants to turn her vector into a matrix with 3 columns and 7 rows with
the text read along the rows. Matlab has a command for this sort of thing:
reshape. To learn how it works, we type help reshape in the command line:
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>> help reshape

RESHAPE Change size.
RESHAPE(X,M,N) returns the M-by-N matrix whose elements
are taken columnwise from X. An error results if X does
not have M*N elements.

So, reshape will take a matrix X and produce a new matrix with the same
entries, only in a different shape. Seeing an example might help us get a better
idea of how this would work.

>> X = 1:12
X =

1 2 3 4 5 6 7 8 9 10 11
>> Y = reshape(X,6,2)
Y =

1 7

2 8

3 9

4 10

5 11

6 12

So reshape took our vector X, and produced a matrix Y with 6 rows and 2
columns. Also note that reshape listed the elements of X down the columns
of Y. Try reshape(1:12,2,6), reshape(1:12,4,3) and reshape(1:12,12,1).
Before you run each command, try to describe what you think you will see.
If what Matlab actually produces differs from your expectation, try to clarify
what went wrong with your prediction.

How could Alice use this to construct her character matrix? As a start she
might try

>> plaintext >CRYPTOLOGY IS AWESOMEZZ’ ;
>> plaintext = lettersToNumbers(plaintext);
>> newMatrix = reshape(plaintext,3,7);

Alice could view how this transformation changed her plaintext by using the
numbersToLetters function provided with these notes:

>> numbersToLetters (newMatrix)
CPLYASE
RTOIWOZ
YOGSEMZ

12
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This isn’t quite what Alice wanted. Notice that the message is listed down the
columns of the matrix, rather than rows as Alice intended, just as we've come
to expect from reshape. Imagine Alice tried the following:

’>CRYPTOLOGY IS AWESOMEZZ’;
>> plaintext = lettersToNumbers(plaintext);
>> newMatrix = reshape(plaintext,7,3);

>> plaintext

Then upon inspecting newMatrix, she would see

>> numbersToLetters (newMatrix)
COE
RGS
YYO
PIM
TSE
0AZ
LWZ

This is nearly what Alice wants, except that the columns in the matrix she
has are the rows in the matrix she wants. This colums-to-rows flip is a very
common operation called the matrix transpose, and Matlab gives us a very
quick shortcut:

>> numbersToLetters (newMatrix’)
CRYPTOL
OGYISAW
ESOMEZZ

By placing a single quote ’ after the matrix, Alice has told Matlab that she wants
the matrix “flipped” so that its columns become the rows of a new matrix.

In order to complete the encryption, Alice needs to read the characters
column-by-column. The reshape function can help us here, too.

>> ciphertext = reshape(newMatrix’,1,21);
>> numbersToLetters(ciphertext)
COERG SYYOP IMTSE OAZLW Z

Notice that this ciphertext matches perfectly the ciphertext Alice produced by
hand earlier in this section.

Putting this all together, Alice has a good start at a piece of code that
performs transpositional encryption:

>> plaintext >CRYPTOLOGY IS AWESOMEZZ’;
>> plaintext = lettersToNumbers(plaintext);
>> newMatrix = reshape(plaintext,7,3);

>> ciphertext = reshape(newMatrix’,1,21)
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Alice can generalize this idea into a function. A function is a series of
commands that execute sequentially. Functions sometimes return a value or
values after they finish running. Sometimes they simply perform a computation
and display the result. Let’s imagine that Alice wants her encryption function
to rerun the cipher text. Her Matlab encoder might look something like this:

function ciphertext = transpositionEncrypter(plaintext, key)
% Produced the numeric vector output CIPHERTEXT
% from the numeric vector input PLAINTEXT using input KEY
plaintext = padPlaintext(plaintext, key);
tempMatrix = reshape(plaintext,length(plaintext)/key,key)’;
ciphertext reshape (tempMatrix,1,length(plaintext));

end

Here, the function’s name is transpositionEncrypter. The function takes two
inputs called arguments, namely plaintext and key. The role of each of these
arguments is clear from its name; in general this is a good practice to follow.
The second and third lines are comments, a collection of text not executed
by Matlab. Comments always start with the percent symbol and are used to
explain what a function, a line, or part of a line is doing, so that others can more
easily understand how your code works. Here, the comment is explaining what
the function is expecting in terms of inputs and what the user can expect to get
as an output. Notice in particular that the comment specifies that the input
plaintext and the output ciphertext must be numeric vectors, not strings of
characters.

The first thing the function does is run (also called “invoke” or “call”) an-
other function padPlaintext that is located in the same directory. The purpose
of padPlaintext, like the function transpositionEncrypter, is clear from its
name. This is a good practice to develop, as it makes it easier to share your
code, or even remember what your own code is doing if you come back to it
several months, weeks, or years from now. The remainder of the function is
much the same as what we wrote for Alice above, except that instead of using
k = 3, we now use the input key, and instead of using n = 21, we now use
length(plaintext). As practice, use help length in the Matlab command
line to learn about this built-in function.

When the function reaches end, it is finished. We see in the first line of
the function ciphertext = .... This indicates that the function will return
whatever the value of ciphertext is when the function terminates. For instance,
imagine we run

>> plaintext = lettersToNumbers(’Cryptology is awesome’);
>> ciphertext = transpositionEncrypter(plaintext, 3);

We now have a new variable ciphertext in our workspace. We can see all the
variables in our workspace using the command whos in Matlab.

>> whos
Name Size Bytes Class Attributes
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ciphertext 1x21 168 double
plaintext 1x19 152 double
If we removed ciphertext = from the first line of the function, the encryptor

would return no value, and we would not have the variable ciphertext in our
workspace. (Try this out to convince yourself.)

2.1.3 Decryption in Matlab

Decryption code will be left as an exercise to the reader with the following hint:
use reshape to undo what Alice did, remembering that a matrix transpose may
be necessary to flip the matrix into the correct orientation.

2.1.4 Cryptanalysis

The biggest clue that transposition encryption has been performed is that the
frequency of characters does not change between the plaintext and the ci-
phertext; since transposition encryption simply rearranges the characters in the
plaintext in order to form the ciphertext, the percentage of characters that are
A in the plaintext is the same as the percentage of characters that are A in the
ciphertext, and this rule holds for any other character in our alphabet.

Each language has its own character frequency. For instance, the 10 most
common English characters together with their relative frequencies are found in
Table 2.1. These relative frequencies vary from language to language, but the
idea is always the same: some characters are much more common than others.

Character | Relative Frequency
e 12.702%
t 9.056%
a 8.167%
0 7.507%
i 6.966%
s 6.327%
h 6.094%
T 5.987%
d 4.253%
1 4.025%

Table 2.1: Relative frequency of English characters. Large amounts of English
plaintext will roughly adhere to these relative frequencies.

If Eve intercepts a large piece of ciphertext and the relative frequencies of
characters in the ciphertext roughly adhere to the relative frequencies found in



Chapter 2. Classical Cryptosystems

plaintext English, then Eve can be fairly certain that some form of transposition
encryption has been performed. We will see in later sections that most encryp-
tion protocols actually change the frequency of characters between plaintext and
ciphertext.

If the simple transposition encryption that we’ve discussed before has been
performed, Eve knows that the secret key shared by Alice and Bob is simply a
number. Moreover, she knows that the key must be a divisor of the ciphertext’s
length. We call the collection of all possible keys the key space. The larger
the key space, the harder it is for Eve to stumble onto the correct key.

Here Eve has a relatively small key space. Given modern computational
technology, she can simply ask a computer to decrypt the ciphertext using each
of these possible keys. If the resulting text contains a large amount of clear
English, then Eve can be relatively sure that she has arrived at the correct key.
After all, the chances that an incorrect key would produce legible text are very
small, especially if the ciphertext is relatively large.

We can write Eve’s strategy in pseudocode, a sort of shorthand for a pro-
gram Eve would write. There are several advantages to writing pseudocode.
First, it gives Eve an intuitive framework from which she can construct an ac-
tual program. Second, it clearly conveys the ideas behind Eve’s algorithm so
that others can understand, even if they don’t know the specifics of the pro-
gramming language that Eve will end up using.

A pseudocode implementation of Eve’s cryptanalytic strategy is as follows:

for keyGuess from 1 to length(ciphertext)
if length(ciphertext) is not divisible by keyGuess
continue
end
plaintextGuess = transpositionDecrypt(ciphertext, keyGuess)
print plaintextGuess
end

This pseudocode would certainly not run in Matlab (or any other language,
for that matter). But the ideas behind what Eve is trying to do should be clear.
Converting this pseudocode into an actual Matlab function is left as a studio
problem for this section.
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2.2 Caesar Ciphers

In contrast to transpositional ciphers which simply rearrange the order of plain-
text characters, substitutional ciphers replace each character in the plaintext
with another character according to an agreed upon formula. The simplest
family of substitutional ciphers are the Caesar ciphers. True to their name,
this collection of techniques was deployed by Julius Caesar over 2000 years ago.
In this scheme, Alice and Bob first agree on a natural number & to serve as the
key. When Alice operates on the plaintext, she replaces each letter with the k"
letter after it. For instance, k = 1, then A becomes B, B becomes C, and so on,
with the expectation that Z becomes A. Similarly, if £ = 2, then A becomes C, B
becomes D, and so on, until Y becomes A, and Z becomes B. Notice we exclude
k = 0, because the ciphertext would be identical to the plaintext in this case.
To decrypt, Bob simply replaces each letter in the ciphertext with the letter k
positions before it in the alphabet.

For example, imagine that Alice wants to encrypt the plaintext “Meet tonight
nine pm Boston Common.” Then the plaintext reads

MEETT ONIGH TNINE PMBOS TONCO MMON
Using the Caesar encryption with key & = 1, Alice would produce the ciphertext
NFFUU POJHI UQJOF QNCPT UPODP NNPO

Notice that unlike transpositional ciphers, substitutional ciphers like the Caesar
ciphers change the relative frequency of characters in the ciphertext.

2.2.1 Caesar Encryption and Modular Arithmetic

If we consider Alice numerically converting her plaintext into numerical vector
form via the mapping A <+ 0, B <> 1, ..., Z <> 25, we can think of the Caesar
encryption of plaintext vector p into ciphertext vector ¢ with key k as

c=p+k.

But as it stands, there is no indication that when we get to the end of the
alphabet, the encryption wraps back around to the beginning. For this, we
need a new mathematical concept.

You may remember learning about remainders back in elementary school
when building up to the idea of long division. We saw that the remainder of
3,7, 11, 15, ... after dividing by 4 are all 3, because after taking out a whole
number of 4s from the quotient, we were left with 3. This idea comes up all
the time in mathematics, engineering, and computer science. In these contexts,
we use different terminology, but the meaning remains the same. We say that
an integer a is congruent (or equivalent) to b modulo a natural number n
if @ and b have the same remainder when divided by n. In symbols, we write
a = b mod n. For some concrete examples, we have

7=3mod4, 162=2mod5, 34=0mod 17, 3 =1mod 2.
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Note that it does not matter which side of the equation the word mod occurs;
the entire line is a statement in modular arithmetic.

We could verify these examples using the mod command in Matlab. Here,
a = b mod n corresponds to the command mod(a,n) producing the value b. For
instance, the first example above would read

>> mod(7,3)

ans

1

Another way to look at this is to conceptualize modular arithmetic as a
wrapping. Imagine we’re thinking about number modulo 4. As we start counting
up from 0, we have the expected 0, 1, 2, 3. When we get to 4 however, we wrap
back to 0, as there is no remainder when 4 is divided by itself. Similarly, 5
now becomes 1, 6 becomes 2, and so on. In fact, every number is congruent to
either 0, 1, 2, or 3 modulo 4, and so we can restrict our attention to just these
numbers. We define this set symbolically as Z4, read “the integers modulo 4.”
This concept generalizes to Z,,, the integers modulo n.

Imagine we’re performing Caesar encryption with key k£ = 1 to the letter Z
<> 25. We shift one letter forward by adding &k = 1 to 25 to form 26. But the
desired result of the encryption is A <+ 0. So we want 26 = 0 mod n for some
n. The only solution here is n = 26, because we don’t want numbers to wrap
before we get to Z. So the correct equation describing Caesar encryption with
key k is

c = (p + k) mod 26,

where here we're assuming that modular operation is applied element-wise in
a vector, so that every entry in c is an element of Zss. In fact, this is the
way modular arithmetic is done in Matlab, as we could verify either from the
documentation in help mod or by inspection

>> mod(1:8,4)

ans

1 2 3 0 1 2 3 0

So Alice’s encryption function might look something like this:

function ¢ = caesarEncrypter(p, k)

end

% affineEncrypter(p, k, ell) performs Caesar encryption to produce
% numeric ciphertext c¢ from numeric plaintext vector p and key k
% according to the equation c = (p + k) mod 26.

c = mod(p + k, 26);
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2.2.2 Caesar Decryption and Additive Inverses

In general, Bob inverts Alice’s operations in order to recover the plaintext from
the ciphertext. Here, your intuition may be telling you that this means that
Bob should subtract k from each element in the ciphertext vector, giving

p = (c — k) mod 26.

Your intuition is exactly right, but we haven’t thought about how negative
numbers behave in modular arithmetic. For instance, if Bob observes A <> 0
in the cipher text generated with key k = 1, he knows that he must shift the
corresponding character back 1 to recover a Z <> 25 in the plaintext. In other
words, we're observing the congruence —1 = 25 mod 26.

If we go way back to the definition of negative numbers (more technically
termed additive inverses) as we typically think of them, the quantity —z is
defined as the number we need to add to x in order to get 0 as the result. The
same is true in modular arithmetic. The quantity -1 is defined as the number
that we need to add to 1 in order to get 0 modulo 26. This sheds light on
the congruence —1 = 25 mod 26 that we intuitively derived in the previous
paragraph. Notice that similar logic implies that every element x of Zsg has a
unique additive inverse that is also in Zsg, namely 26 — x. This is good news,
as it means that Bob can always invert the operations performed by Alice in
order to recover the plaintext. What’s more, these arguments are not at all
dependent on the fact that we’re performing all arithmetic modulo 26; we could
easily perform the same operations with the same results using an alphabet with
n symbols for any n > 1.

Matlab understands modular equivalence of negative numbers in exactly the
want we’ve outlined above. For instance,

>> mod(-4:4,4)

2.2.3 Groups

We’ve noticed that Z,, has some nice structure and properties, including a special
number 0 called the additive identity such that = + 0 = 0 mod n for every x
in Z,, and a unique element —zx for each element z called the additive inverse
of z such that = + (—z) = 0 mod n. But the goodness doesn’t end there. It’s
also true that for elements a,b and ¢ in Z,, the equation a+ (b+c¢) = (a+b)+¢
holds. This property is called associativity; notice how b “associates” with ¢
on the left side and with a on the right side. Finally, for any two elements a
and b in Z,,, we know that a + b mod n is an element of Z,,. Here, we say that
Zy, is closed under addition. These four properties

e Identity
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e Invertibility
e Associativity
e Closure

are the defining characteristics of an algebraic structure called a group. If in
addition, we have the propery that a + b = b+ a for any two elements a and b
in the group, we say that the group is commutative; notice that the elements
move around or “commute” in the equation. Man, but not all, of the groups
we’ll see in the course of our exploration will be commutative.

More formally, a group is a set together with an operation that acts on two
elements at a time which has the four properties listed above under the given
operation. For example, we have seen that the set Z,, = {0,1,2,...,n—1} is a
group under the operation of addition. Groups appear throughout mathematics
and throughout cryptography, as well. We’ll see the power of these simple
structures in many different applications. Moreover, we’ll use groups as the
foundation for more interesting and complex algebraic structures that open
even more applications for us.

2.2.4 Caesar Cryptanalysis

Under Shannon’s maxim, we assume that Eve knows that Alice and Bob have
been passing messages using a Caesar cipher and that Eve does not know the
key k. Therefore, Eve knows that every letter in the plaintext has been shifted
by k positions to form the ciphertext, but she doesn’t know the exact value of
k. In any cryptanalytic attack, Eve’s task is to somehow search the key space
for the correct key. Typically, she can do this in any number of ways, and over
the course of these notes, we’ll see several different methods.

To attack Caesar ciphers, Eve can use a technique called frequency anal-
ysis to try to find k. Each language has its own character frequency. For
instance, the 10 most common English characters together with their relative
frequencies are found in Table 2.1. These relative frequencies vary from lan-
guage to language, but the idea is always the same: some characters are much
more common than others.

For example, Figure 2.3 shows the relatively frequency distribution of a long
novel written in English. Imagine we encrypt this novel using a Caesar cipher
with key k = 10. The relative frequency distribution of the resulting ciphertext
can be seen in Figure 2.4. Notice that since a Caesar cipher simply shifts every
letter in the plaintext alphabet by k positions, the frequency distribution of
the ciphertext is a shifted version of the frequency distribution of the plaintext.
More precisely, the plaintext frequency distribution has been shifted by & = 10
positions to the right to form the frequency distribution of the ciphertext. Notice
that this includes wrapping under modular arithmetic. For instance, the spike
at T <> 19 in the plaintext becomes a spike at 19 4+ 10 = 29 = 3 mod 26 in the
ciphertext.
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Figure 2.3: Relative frequency distribution for a long English novel. Notice that
the relative frequencies correspond closely with the values listed in Table 2.1.
In particular E < 4 is the most common character.

But how can Eve use this information in her attack? We assume that she
receives all ciphertext passing through the public channel. Therefore, Eve can
construct a relative frequency distribution as featured in Figure 2.4. If she
assumes that the biggest spike in the frequency distribution of the ciphertext
represents the letter E in the plaintext, then she can automatically deduce k.
For instance, suppose that Eve determined the most frequent character in the
ciphertext to be 0 <> 14 as in Figure 2.4. She assumes this ciphertext character
came from plaintext character E <> 4. Then she deduces that k = 14 — 4, the
difference between the final value and the assumed initial value.

There are limitations to this attack. The character E is only the most likely
character in English text on average. In short pieces of plaintext, this property
will likely not hold true, as you can convince yourself in any number of ways.
We should only expect for this averaging argument to hold true for large pieces
of ciphertext. This means that Eve may have to listen to the public channel for
a while before being able to act on what she’s learned.
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Figure 2.4: Relative frequency distribution for a long English novel after encryp-
tion with a Caesar cipher with key & = 10. Notice that the relative frequencies
have been shifted to the right by 10 positions from Figure 2.3. In particular, E
<> 4 has become O <+ 14.
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2.3 Affine Ciphers

Affine ciphers can be seen as a generalization of the Caesar ciphers presented in
Section 2.2. Here, Alice and Bob first agree on a pair of numbers (k, £) to use
as the key. Using two keys instead of one substantially increases the size of the
key space, and therefore increases the work Eve would need to do in order to
break the cipher with a brute force attack. In this simple but often intensive
attack, Eve would simply try to decipher the ciphertext using every key in the
key space. The chances of producing legible plaintext when deciphering with
the incorrect key is very small, so if Eve’s efforts produce legible plaintext when
deciphering with a particular key, she can be relatively certain that she has
found the correct key.

2.3.1 Affine Encryption

Alice forms the ciphertext ¢ from the plaintext p according to the following
equation:
¢ = ({p + k) mod 26.

For a concrete example, imagine that Alice and Bob agree on the key (3,4).
Then,

A< 4(0)4+3=3, B 4(1)+3=17,..., Z+ 4(25) + 3 = 25 mod 26.

Notice that unlike in a Caesar cipher, adjacent letters in the plaintext alphabet
are not mapped to adjacent numbers in the ciphertext. In fact, if two letters
are adjacent in the plaintext alphabet, then their numerical representations in
the ciphertext differ by exactly £.

2.3.2 Affine Decryption and Multiplicative Inverses

In order to recover the plaintext, Bob needs to undo whatever Alice has done
in order to recover the plaintext p from the ciphertext c. It may help to think
of affine decryption symbolically. If Alice encrypts according to the function

c = ({p + k) mod 26, (2.3.1)
then solving for p using traditional methods, Bob should compute
p =/"*(c — k) mod 26. (2.3.2)

We saw in the previous section that Zsg is a group under addition, and so the
additive inverse —k exists for any choice of key k. But what about ¢~1?

Traditionally, we have thought of the number ! as the number we would
need to multiply by z in order to arrive at 1, the multiplicative identity, under
“normal” arithmetic. For real numbers, we've always had z=! = 1/x for any
nonzero . We considered x = 0 to be the unique real number that had no
multiplicative inverse.
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The same general idea holds in modular arithmetic, but the specifics change.
The inverse of an element x is still the element z~! such that 'z gives 1, but
now all arithmetic is modular. We call an element = that has an inverse in Z,, a
unit of Z,,. For instance, in Zsyg, both the elements 3 and 9 are units, because

3-9=27=1mod 26. (2.3.3)
We conclude that 37! = 9 and 97! = 3. Similarly, we have
5-21 =105 = 1 mod 26, (2.3.4)

so that 5 and 21 are an inverse pair modulo 26. Notice that the element 1 is
always a unit in modulo any n, since 1 -1 =1 mod n for any n.

But what about 2 modulo 267 We can begin by guessing and checking.
Nothing unusual happens until we arrive at 13, for which we have

213 = 26 = 0 mod 26. (2.3.5)

This is the type of thing that could never happen in real number arithmetic: we
have the product of two nonzero numbers resulting in 0. We call any numbers
that have this property zero divisors; for instance, 2 and 13 are zero divisors
in Zos. What'’s even stranger, this property implies that 2 cannot have a mul-
tiplicative inverse modulo 26. We’ll prove this claim in the next subsection; for
now, let’s continue thinking about the application at hand.

Imagine Alice and Bob agree on the key (k = 4,¢ = 13). Notice that here
¢ =13 is a zero divisor in Zsgg. Notice what happens during encryption of A and
C:

A~13-0+44=4=4mod 26, C<«+ 13-2+4=30=4mod 26.

So if Bob receives a 4 in the ciphertext, it’s impossible for him to tell whether
Alice was encrypting A or C! This shows that we’ve been glossing over an im-
portant point when we’ve talked about Bob “undoing” whatever Alice did: Bob
needs to be able to uniquely undo whatever Alice has done. If Alice uses a zero
divisor for ¢, Bob is left guessing what Alice meant. This is not a good situation!

We'll leave the decryption algorithm as an exercise, with the stipulation that
Bob can assume that the key £ that Alice and Bob have agreed upon is not a
zero divisor. We’ll discuss a quick way in which Bob can actually compute the
inverse £~! at the end of the next section.

2.3.3 Rings

With Caesar ciphers, we saw that Zss was a group using addition modulo 26
as our operator for adding elements. But in affine ciphers, there’s also a multi-
plicative operation that makes sense in this context. Here, we’re dealing with a
cousin of a group called a ring. Any ring R has the following properties:

e The elements of R form a commutative additive group.
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e The elements of R are closed under multiplication, meaning that ab is an
element of R for any choice of a and b.

e There is a multiplicative identity 1 such that a-1=1-a = a for any a in
R.

e Multiplication is associativity, i.e., a(bc) = (ab)c for any choice of a, b, ¢
in R.

e Multiplication distributes over addition, meaning a(b + ¢) = ab + ac.

If in addition we have the property that ab = ba for any choice of a and b in
the ring, we say that the ring is commutative; notice that the elements in the
equation move around or “commute.” Most of the rings that we’ll see over the
course of our exploration will be commutative. We could verify that Z, is a
commutative ring for any choice of n; we will use this fact frequently. Most of
the properties hold from our definitions of modular addition and multiplication.

The zero divisors and units provide an interesting structure to any ring.
We’ll use this opportunity to both illuminate this structure as well as introduce
some basic proof techniques that will be useful throughout the course.

Theorem 2.3.1. If an element x is a unit in Z,, then x is not a zero divisor
N Lo,

Proof. We will use a proof strategy here called proof by contradiction. We’ll
assume that an element x of Z, is both a unit and a zero divisor, and show
that this establishes conclusively that a deep contradiction would exist. We will
conclude that an element cannot be both a zero divisor and a unit at the same
time.

Suppose that an element z in Z, is a unit. This implies by definition that
there exists an inverse element =1 such that xz=! = 2712z = 1 mod n. (All
equivalences from here on in this proof will be modulo n without further men-
tion.) Suppose now for contradiction that z is also a zero divisor. This implies,
again by definition, that there exists some nonzero element y such that yx = 0.
Let’s play around with these two facts and see what happens. Using the first
assumption, we can write

rrt=1. (2.3.6)
Then multiplying both sides by y gives
ylzz™ =y (2.3.7)
(yr)at =y (2.3.8)
0=y, (2.3.9)

where we’ve used the second assumption that = and y are zero divisors in the
ring. Here we're seeing the contradiction first-hand: the element y cannot be
zero, yet if x is to be both a zero divisor and a unit, then y must be equivalent
to 0. We conclude that x could not have been a zero divisor and a unit in the
first place. Therefore, if x is a unit, it is not a zero divisor, and vice versa. [
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So we know if x is a unit, then « is not a zero divisor. But what if x is not
a unit? We can cover this case, too.

Theorem 2.3.2. If an element x is not a unit in Z,, then x is a zero divisor
N Ly,

Proof. Here we will use a proof strategy called the pigeonhole principle. The
name might be silly, but the idea is rather foundational: if we have n items (or
pigeons) to be put into m < n locations (or pigeonholes), then at least 1 of the
locations must contain at least 2 items (at least 1 pigeonhole must contain at
least 2 pigeons). This tactic comes up over and over again in mathematics.

Suppose that a nonzero element x is not a unit of Z,,. Then there does not
exist a unit z7! such that zz=! = 1 mod n. (Again, we will assume from here
on out in the proof that all equivalences are taken modulo n.) Consider the
product of x with every other element in Z,,. There are n total products having
the form

Try, Trg, XT3, ..., TTy, (2.3.10)

where the r; are serving as our placeholders for the elements of the ring 7Z,.
Since x is not a unit, none of these products is equivalent to 1. So there are
at most n — 1 values in Z, that these products can assume. But there are n
total products. By the pigeonhole principle, at least two of the products must
be equivalent, allowing us to write

rr; = ar; (2.3.11)

for some r; # r;. We can rearrange this equivalence using the properties of
rings.

xr; —ar; =0 (2.3.12)
x(r; —rj) =0. (2.3.13)

Since r; # r;, we have (r; —r;) =y # 0. But this implies that zy = 0 with
neither x nor y equal to 0. We conclude that if  is not a unit, then it must be
a zero divisor. O

We can combine the previous two results into a simple but powerful state-
ment about the structure of Z,, (or indeed, any ring).

Theorem 2.3.3. An element x of Z,, is either a unit or a zero divisor but not
both.

The fact that the elements of a ring can be partitioned into two disjoint sets,
one of zero divisors and one of units, is nice, but rather theoretical. For instance,
for a given x, how can we tell if x is a zero divisor or a unit? Fortunately, there
exists a simple test related to the concept greatest common divisor. The
greatest common divisor (also known as greatest common factor) of two
numbers z and y (often abbreviated ged(x,y)) is the largest number d that
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divides both x and y evenly. We can make some direct observations including
ged(x,y) < 2z and ged(z,y) < y. We also have ged(z,y) > 1, because every
number is divisible by 1. In Matlab, ged(z,y) is implemented as gcd(x,y).

Example 2.3.1. The greatest common divisor of 4 and 42 is 2. We can list of
the divisors of 4 (1,2, and 4) and the divisors of 42 (1, 2, 6, 7, 21, 42). The
greatest number appearing in both lists is 2. Therefore ged(4,42) = 2. We can
easily confirm this fact in Matlab:

>> ged(2,42)
ans =

2

We say that two integers z and n are coprime if they share no common
factor other than 1. Said another way, we call  and n coprime if ged(z,n) =
1. This notion of coprimality is intimately connected to the existence of a
multiplicative inverse of = in Z,.

Theorem 2.3.4. If ged(z,n) = 1, then x is a unit of Z,.

Proof. We will use a proof strategy that we’ll refer to as standing on the
shoulders of giants, which means that we will use a result from another
mathematician to help us prove the desired result. This strategy is crucial for
the development of mathematics over time. The community feeds itself in a
way, with the work of earlier researchers paving the way for new work.

Let’s suppose that ged(z,n) = 1. We’ll show that  must have an inverse in
Z,. The quickest way is to use a result called Bézout’s identity which says
that for any = and n, we can find integers @ and b such that

ax + bn = ged(a, n). (2.3.14)

(Notice that either a or b must be negative.) Before we go on, let’s see an exam-
ple of Bézout’s identity. In the previous example, we showed that ged(4, 42) = 2.
We could confirm that

11(4) — 1(42) = 2. (2.3.15)

Notice that Bézout’s identity doesn’t tell us exactly what values a and b will
take, it just guarantees that such a pair of numbers must exist.
In terms of our work here, we have

ar+bn=1 (2.3.16)

But since any multiple of n is congruent to 0 modulo n, we have bn = 0 mod n,
and so

ax = 1 mod n. (2.3.17)

This directly implies that a is the multiplicative inverse of z in Z,,. We conclude
that if ged(z,n) = 1, then z is a unit in Z,. O
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So if ged(x,n) = 1, then x has an inverse modulo n. But what about if
ged(z,n) > 17

Theorem 2.3.5. If ged(z,n) =d > 1, then x has no inverse in Zy.

Proof. Here we will use a strategy we might call bootstrapping which involves
using an earlier result that we ourselves have shown in order to get to the desired
result. Bootstrapping is an integral part of tackling big problems, because
interesting results are often too difficult to prove in a single sweep; we need to
prove several small things and then assemble them into the larger picture.

Suppose we have an element x in the ring Z,. By definition, x < n. Fur-
thermore, let’s assume that ged(z,n) = d > 1. This implies that z = dg, for
some ¢, and n = dg,, for some ¢,. We can combine these facts with some of
our commutative ring properties to show that x must be a zero divisor:

@n® = qn(dgz) = (dgn)ge = ng: = 0 mod n. (2.3.18)

Since z is a zero divisor, our earlier result from Corollary 2.3.3 states that z is
not a unit. Therefore, we can conclude that x has no inverse in Z,. O

We can combine our results into another simple and powerful statement
about inverses (or lack thereof) in Z,.

Theorem 2.3.6. An element x has an inverse in Z,, if and only if ged(z,n) = 1.

In terms of affine ciphers, our results imply that if ged(¢,26) = 1, then ¢
is an appropriate key for Alice and Bob to use, and if ged(¢,26) > 1, then £
is not appropriate. We can use the supplied function modInv(x,n) to find the
multiplicative inverse of x in Z,, in Matlab:

>> modInv(5,11)

ans =

>> modInv(5,26)
ans =

21
Notice that the number 5 has different inverses in different rings: 57 = 9 in

Z11 and 51 =921 1in Zioq.

2.3.4 Affine Cryptanalysis

While larger than the key space of Caesar ciphers, the key space of affine ciphers
is still well within the bounds of a simple brute force attack. Here, Eve can
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simply cycle through the pairs (k,¢) and attempt decryption. If the result is a
clear plaintext, then Eve has overwhelmingly likely stumbled upon the correct
key. This is not an especially elegant or insightful attack, but in the absence of
any better idea, this is Eve’s default attack option.

In terms of a Matlab implementation, Eve could search the key space with
a double for loop. In pseudo code, her function might look something like

function affineDecrypterBruteForce(ciphertext)
for k from 1 to 25
for ell from 1 to 25
if gcd(ell,26) ==
affineDecrypt (ciphertext, k, ell)
end
end
end
end

There are a couple of things to note here. First notice that the inner for
loop runs in its entirety for each value of k in the outer loop. So the (k, ¢) pairs
tested would proceed in order as

(1,1), (1,2), (1,3), ..., (1,25), (2,1), (2,2), ..., (2,25), ..., (25,24), (25,25).

Second, notice that Eve only bothers checking values of e11 that she knows have
a multiplicative inverse in Zog.
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2.4 Polyalphabetic Ciphers

A major weakness of many classical cryptosystems is the limited key space. Even
without advanced computational technology, Eve would be more than capable
of performing a straight-forward brute force attack on an affine cipher. Despite
their weaknesses, these secrecy technologies were the state of the art until the
early Renaissance period when a collection of techniques called polyalphabetic
ciphers were developed. Here, Alice and Bob agree on a string of characters
to use as the key. As we'll see, enlarging the key from a single character to a
word or phrase can form dramatically larger key spaces, providing a much high
degree of security from simple brute force attacks. This process will culminate in
a discussion of one-time pads, a cryptosystem that, when properly implemented,
Eve could not break even with enormous time and effort.

2.4.1 Encryption

Alice and Bob begin by agreeing on a key, for instance the word “KEY.” Alice
lines up her plaintext, for instance “PLAINTEXT”, together with a string which
repeats the key:

PLAINTEXT
KEYKEYKEY

Alice then forms the ciphertext by vertically adding the numerical representa-
tions of the two strings modulo 26.

15 11 0 8 13 19 4 23 19
+ 10 4 24 10 4 24 10 4 24
25 15 24 18 17 43 14 27 43
= 25 15 24 18 17 17 14 1 17 mod26

(2.4.1)

We call this type of addition component-wise, since the sum is obtained
by adding like components in both vectors. So Alice sends the ciphertext
ZPYSRROBR corresponding to the component-wise sum of the plaintext and the
repeated key. Notice that the length of the ciphertext does not have to be a
multiple of the length of the key. For example, Alice could encrypt her name
by adding vertically in the following array:

ALICE
KEYKE

Notice that adjacent characters in the plaintext are encrypted in different
ways. We call this type of technique polyalphabetic, because the same letter
in the plaintext can be mapped to different letters in the ciphertext. In effect,
each letter in the key induces a new Caesar cipher alphabet to be used. The
particular type of polyalphabetic cryptosystem Alice has used here is called the
Vigenére cipher. Later, we’ll see even more secure variants.

Implementing this encryption routine in Matlab is most easily accomplished
through the use of a specialized function called repmat:
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>> help repmat

REPMAT Replicate and tile an array.
B = repmat(A,M,N) creates a large matrix B consisting of an M-by-N
tiling of copies of A. The size of B is [size(A,1)*M, size(A,2)*N].
The statement repmat(A,N) creates an N-by-N tiling.

>> repmat([10 4 24],1, 3)
ans =
10 4 24 10 4 24 10 4 24

Suppose we already have a variable p which is a numeric vector representing
the plaintext and another variable k which is a numeric vector representing the
key. Our encryption function might look something like:

function ¢ = vigenereEncrypter(p,k)
numReps = ceil(numel(p)/numel(k));
repeatedKey = repmat(k,1,numReps);
c = mod(p + repeatedKey(1:numel(p)),26);
end

The first line of the function determines the number of times we need to repeat
the key. For instance, in the example above, the plaintext ALICE has 5 charac-
ters, so numel (p) would be 5, and the key KEY has 3 characters, so numel (k)
would be 3. Then ceil (numel (p) /numel (k)) would equal 2; recall that ceiling
is the equivalent of rounding up.

The second line in the function forms the repeated key. At this point in the
function, the value of repeated key would be the numeric representation of the
string KEYKEY.

The third line of the function forms the ciphertext. Notice that in the com-
mand repeatedKey (1:numel (p)) we slice the vector repeatedKey to use only
the portion that corresponds to positions in the plaintext. (More generally,
slicing refers to any action where we isolate part of a vector or matrix, e.g.
x(3:10).)In terms of the running example, we only add the numeric represen-
tation of KEYKE, since numel(p) = 5.

2.4.2 Decryption

Bob’s decryption process involves subtracting (modulo 26) from each component
of the ciphertext the value that Alice added. This again would involve an
execution of repmat. We'll leave this as an exercise.

2.4.3 Cryptanalysis

The cryptanalysis of poylalphabetic ciphers is much more difficult than that of
other classical ciphers exactly because the key space is so much larger. A simple
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brute force attack cannot be expected to be fruitful against a Vigenére cipher
with moderately long key length. For instance, even if Even knows that the key
has length 10, she would have 26'° ~ 1.4 x 10'* possible keys to test. As the
key length grows, this task becomes infeasible. Notice, too, that increasing the
key length doesn’t harm Alice or Bob at all. Eve will need to be more clever in
her attack.

Eve has two main tasks when confronting a piece of Vigenére ciphertext:

(1) determine the length of the key
(2) determine what the key is

With the key in hand, Eve can completely decrypt the ciphertext.

Key Length

In order to determine the key length, Eve can employ a tactic called Fried-
man analysis. In the early 1900s, William Friedman began thinking about
coincidences, defined here as the chance event that the the same position in two
strings of text contain the same letter. Between two uniformly random strings of
English text, this chance is rather low. (You could convince yourself it is in fact
exactly 1/26.) But Friedman’s real contribution was considering coincidence in
the case where the two strings are not uniformly random, but in fact related to
one another.

Imagine Eve compares the intercepted ciphertext with a shifted version of
itself and looks for coincidences, as seen below:

SXUKWQOZCXSAVSAUSDKZCBCUKVKOZCXMLQMLDLCcICYRCOLGVP. . .
_SXUKWQOZCXSAVSAUSDKZCBCUKVKOZCXMLQMLDLcCICYRCOLGV. . .

The underscore character here simply denotes the shift, and lowercase letters
denote coincidences. With one shift, Eve observes only a single coincidence in
the first 50 characters or so. This might not be too surprising, because in order
for two adjacent letters in the ciphertext to be the same (which would lead to a
coincidence after a single shift), the key and the plaintext would have to interact
in a very peculiar way. We’ll delve deeper into this later. Eve can trying shifting
again, for a total of 2 shifts, and looking for coincidences:

SXUKWQOZCXSAVSAUSDKZCBcUKVkOZCXMLQMLD1CCIcYRCOLGVP. . .
__SXUKWQOZCXSAVSAUSDKZcBCUkVKOZCXMLQM1DLCcICYRCOLG. . .

Here Eve sees 4 coincides. She can repeat the process for a total of 3 shifts:

SXUKWQOZCXSAVsaUsDKZCBCUKVKOZCXMLQm1DLCC1cYRCOLGVP. . .
__SXUKWQOZCXsaVsAUSDKZCBCUKVKOZCXm1QMLD1cCIcYRCOL. ..

Here, Eve sees 8 coincidences! This is twice as many as any shift so far. In
a larger chunk of ciphertext, the difference between the coincidences would be
even higher. Finally, if she shifts a total of 4 positions, she again observes a
small number of coincidences; here, in fact, she observes none:
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SXUKWQOZCXSAVSAUSDKZCBCUKVKOZCXMLQMLDLCCLCYRCOLGVP. . .
____SXUKWQOZCXSAVSAUSDKZCBCUKVKOZCXMLQMLDLCCLCYRCO. . .

But what’s actually going on here? When Eve shifts a multiple of the key
length, the two characters vertically aligned with one another were encrypted
using the same character of the key. So if the two plaintext characters started
equal, then their ciphertext characters were equal, too. This sort of coincidence
is much more likely than two characters that were encrypted using different
Caesar ciphers agreeing by chance. (We could prove this much more formally
as Friedman did, but it would be relatively involved; let’s just stick with the
intuition.) Therefore, when Eve shifts by a multiple of the key length, she should
expect to see many more coincidences than when she doesn’t.
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Figure 2.5: Friedman analysis for a large piece of Vigenere ciphertext. Spikes
occur at multiples of the key length. Here it seems that the key is likely of
length 3.

Imagine Eve automates this process, shifting and keeping track of the per-
centage of positions that were coincidences. In Matlab, for vectors x and y, we
can define a new vector z = (x == y) that is 1 in positions in which x and y
agree, and 0 otherwise. Notice that since single = indicates assignment, we need
to use == to indicate the equality in the traditional sense of the word. Eve could
then count coincidences in two vectors by summing: sum(x == y).

The results of such an endeavor can be seen in Figure 2.5. Notice that the
“background level” of coincidences if roughly 1/26 = 3.85%, the proportion we
would expect if the two strings were uniformly random. Out of the background
noise, we see huge spikes at regular intervals. These are the coincidences caused



Chapter 2. Classical Cryptosystems

by a shift that is equal to a multiple of the key length. Since the spikes occur
every 3 shifts in the Figure 2.5, we conclude that the length of the key is most
likely in this piece of ciphertext.

Key Contents

Even with the the length of the key in hand, Eve still has a tough job ahead. Af-
ter all, if the key has length 100, there would be 26'%° possible keys to search if
she were performing a brute force attack. Fortunately for Eve, she can be much
more clever if the ciphertext is large enough. For instance, she knows that each
character in the plaintext is encrypted using a Caesar cipher, with the particu-
lar number of shifts determined by the value of the key in a particular position.
Once Eve knows the length of the key, she can group all ciphertext charac-
ters that were encrypted with the same Caesar cipher and form a frequency
distribution of the characters. For instance, after Eve knows the ciphertext c
was encrypted using a key of length 3, she knows the elements c(1:3:end)
were all encrypted using the same Caesar cipher. For instance the command
frequency(c(2:3:end)) would show Eve the relative frequency distribution of
all ciphertext characters encrypted using the second character in the key.

Eve can perform a similar process for each of the positions in the key. Note
that this holds better for long ciphertexts and worse for short ciphertexts. For
short ciphertexts, we should expect that our best guess will often be wrong,
because the frequencies in a short plaintext do not necessarily agree very well
with the frequencies in English plaintext at large. Even still, Eve has drastically
narrowed the field of possible choices.

2.4.4 Polyalphabetic Variants

If Alice and Bob use a polyalphabetic cipher with key length £ = 1, they have
essentially agreed to use a Caesar cipher of some variety. There are only 26
possible keys, and Eve could easily test each in order to see if the candidate
plaintext makes sense. Alice and Bob can begin to lengthen the key in any
number of ways.

A running key cipher is a polyalphabetic cipher in which the key is the
same length as the plaintext and is drawn from an agreed upon book, magazine,
or the like. These cryptosystems were relatively popular in the Cold War.
Covert field agents would be supplied with a common and innocuous book, a
farmer’s almanac or popular book of fiction, for example. To encrypt a message,
agents would simply begin using the book itself as the key. Since the plaintext
would be drastically shorter than a key, there would be no need to repeat the
key. With no repetition, the cryptanalytic strategy outlined previously no longer
applies. This provided relatively strong security at relatively low cost, a good
combination for most applications. That being said, using English text as a key
is not perfect. Certain character combinations (e.g., TE, RE, TH, etc.) are much
more common than others (e.g., QU, CZ, PH). Similar facts hold for character
strings of length 3, 4, and so on. An experienced cryptanalyst can use these
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properties to intelligently narrow her search. Moreover, English is often highly
structured. If a cryptanalyst begins to figure out chunks of the key, it can be
easy to begin guessing the remainder from context. We might call this the
“Wheel of Fortune effect.”

One-time pads are the most secure classical cryptosystems. Here, like with
a running key cipher, the key is the same length as the plaintext. The major
difference is that in a one-time pad, each character is generated uniformly ran-
domly and independently from all other key characters. Once a key is used, it
is never reused; this is the origin of the “one-time” moniker. Properly imple-
mented, one-time pads provide the highest level of security possible: Eve gets
no new information about the plaintext from the ciphertext. But nothing is ever
free. While running pads are easy to use, one-time pads are incredibly difficult.
Alice and Bob need a common, large source of uniformly random characters or
numbers. While large sources of text are easy to find, large random samples
are virtually relatively rare. Moreover, since Alice and Bob can never reuse
key while maintaining the highest level of secrecy, they need a way to replenish
their key stock, presumably while physically separated from one another. These
implementation issues make the perfect cryptosystem in theory used very rarely
in practice.
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Chapter

Modern Cryptosystems

Modern cryptosystems are designed to disguise plaintext composed of 0s and 1s.
These binary digits, also known as bits, are the most basic unit of information
and the foundational unit of memory in modern computer hardware. Most
modern cryptosystems rely on the assumed difficulty of certain mathematical
problems related to arithmetic in Z,,. After detailing the most commonly used
modern cryptosystems, we will widen our scope by investigating the concept of a
cryptographic hash function. Combining modern encryption and hash functions
will allow us deal with state-of-the-art applications such as authentication and
zero-knowledge proofs.

41
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3.1 Diffie-Hellman Key Exchange

One of the major problems with classical cryptosystems is the idea of a key
shared between Alice and Bob. Each cryptosystem seen in Chapter 2 relied on
some piece of information being jointly accessible to Alice and Bob but not to
Eve. While this is easy to assume in theory, it’s much more difficult to implement
in practice. After all, if Eve is monitoring the public channel, how do Alice and
Bob securely agree upon a key? In many cases, the only reasonable option was a
physical exchange. For instance, before a field agent was sent abroad, she might
be given a copy of a particular book to use in a running key cryptosystem.
In a more extreme example, physical copies of cryptographic keys could be
placed in a briefcase which is then handcuffed to a courier. Whatever the
methodology, exchanging keys in the classical cryptographic era was expensive,
time-consuming, and dangerous. Key exchange in the modern era is much easier
and safer, but much more mathematically interesting, than previous methods.

3.1.1 Primitive Roots

Rings in general have many interesting properties that can be exploited in cryp-
tography. One such notion is primitive roots. We say an element z of Z,, is a
primitive root (or simply is primitive) if every element x of Z,, that is coprime
to n can be written as x = z* for some integer k. Said another way, an element
z is primitive in a ring if every unit is equivalent to a power of z.

Example 3.1.1. The element 2 is primitive in Zs. By taking consecutive pow-
ers of 2, we can see that all elements in the group are accounted for
2l=12 922=4, 2°=3, 2 =1.

) )

Example 3.1.2. The element 2 is not primitive in Zg. By taking consecutive
powers of 2, we can see that some elements that are coprime to 6 are left out,
for instance 1, 3, and 5.

22 =4, 23

3 9

2

P

Example 3.1.3. The element 3 is not primitive in Z11. By taking consecutive
powers, we can see that some elements that are coprime to 11 are left out, for
example 2:

31=3,32=9 33 =5, 3"=4, 3°=1,...

Example 3.1.4. The element 6 is primitive in Z11. By taking consecutive
powers, we can see that some elements that are coprime to 11 are left out, for
example 2:

6!=6,6°=3,6=7,6"=9,6"=10,6=5,6"=8,6=4,6"=2,6"=1

As we can see in these examples, as we increase the value of the exponent
k, the value of 2* seems to jump all over the range. Said another way, given an
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element y and a primitive element x, it’s very difficult guess what value of k leads
toy = x*. This is known as the discrete logarithm problem. The security of
several different cryptographic protocols rests on the difficulty of this problem.
There is no proof that this problem is hard, however; it could be the case that
tomorrow someone invents a clever new way to crunch discrete logarithms, and
these cryptosystems would fall apart. That being said, these techniques have
been around for some time, and thus far no one has made public a cryptanalytic
strategy that would solve discrete logarithms in a reasonable amount of time.

3.1.2 Key Exchange

Alice and Bob will each keep track of several pieces of information over the
course of the Diffie-Hellman key exchange. First, Alice and Bob agree on a
large prime number p and a primitive element g of Z,. In practice, p could
have hundreds of digits in its decimal representation. Alice and Bob make these
numbers public. In additional, Alice keeps a private key a (which she does
not share with anyone), and Bob keeps a private key b (which, similarly, he
does not share with anyone). Notice that already this formulation is different
from classical cryptosystems, in that Alice and Bob publicize some information
openly.

Alice and Bob will both compute a shared number s = ¢%°, but in a way
that Eve will not be able to replicate. Alice and Bob could then use s as the
key for secure classical cryptographic communications.

Alice begins the exchange by computing A = ¢ mod p and sending A over
the public channel to Bob. Notice that because of the difficulty of the dis-
crete logarithm problem, Eve cannot determine Alice’s private key a, even with
knowledge of A and g! When Bob receives A, he can compute the shared secret
by exponentiating:

s= A" = (¢*)" = ¢°® mod p.

Similarly, Bob computes B = ¢® mod p and sends B over the public channel to
Alice. Again, Eve cannot figure out b given B and g due to the difficulty of
the discrete logarithm problem. When Alice receives B, she can compute the
shared secret in much the same way Bob did:

s =B = (¢")% = g** mod p.

So Alice and Bob have computed a shared secret number s in Z, while only
transmitting harmless information across the public channel.

Example 3.1.5. Alice and Bob agree on a prime number p = 11 and a primitive
element g = 2. Alice randomly generates a random key a = 5, and Bob randomly
generates his private key b = 9. Alice and Bob exchange

>> A = mod(275,11)

A =
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10

>> B = mod(279,11)
B =

6

Alice and Bob can the compute the shared secret s = 10 via s = B* and s = A,
respectively:

>> s = mod(6°5,11)

10

>> s = mod(1079,11)

10

3.1.3 Matlab Implementation

Many of the difficulties in implementing cryptography can be attributed to
translating pure mathematical ideas to some sort of computational represen-
tation. One such example can be found in Matlab’s mod command. Take for
instance,

>> mod(2°100,3)
ans =

0

After a moment of thought, we can conclude that there is no way this answer
is right! After all, 219 can’t be divisible by 3, exactly because it’s a power of
2. So what’s going on here? The number 2!%° is so big that Matlab cannot
accurately represent it as an integer; it lops off some of the less significant digits
in order to hold the quantity in memory. This is fine most of the time, but not
in our case. For our cryptographic techniques to work, we need full precision.

There are techniques for dealing with arithmetic operations on large num-
bers. The function powMod included with these notes, for instance, is able to
compute ¢g* mod n for large g,z and n:
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>> help powMod
powMod (BASE , EXPONENT ,MODULO) computes BASE“EXPONENT mod MODULO using the
right-to-left binary method.

The exact method used to perform this computation isn’t really that important,
though it is very interesting if you're so inclined. The good news is that we can
accurately compute modular quantities with large arguments:

>> powMod(2,100,3)
ans =

1

We could confirm that this answer is correct by considering 2'%° = 459, Then
since (ab) mod n = (a mod n)(b mod n), we have

4°Y = (4mod 3) - -- (4 mod 3) = 1.

Of course, this is just one example, but it is heartening to see everything turn
out the way we should expect.
We can see an example of powMod used in the Diffie-Hellman scheme.

Example 3.1.6. Alice and Bob agree on a prime number p = 509 and a prim-
itive element g = 2. Alice randomly generates a random key a = 72, and Bob
randomly generates his private key b = 215. Alice and Bob exchange, respec-
tively,

>> A = powMod(2,72,509)
A =

453
>> B = powMod(2,215,509)

B =

249
They can then both compute the shared secret:

>> s = powMod(249,72,509)

281
>> s = powMod(453,215,509)

281
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3.1.4 Man-in-the-middle Attacks

While the difficulty of the discrete logarithm makes it tough for Eve to outright
break the Diffie-Hellman key exchange scheme, a simple but effective technique
known as a man-in-the-middle attack can be quite effective. Imagine that Al-
ice and Bob are trying to perform a secure key exchange. A malicious adversary,
traditionally named Mallory, puts herself between the two parties by pretend-
ing to be Alice when communicating with Bob, and pretending to be Bob when
communicating with Alice. To Alice and Bob, everything looks normal. Little
do they know, Mallory is privy to their entire conversation.

For an example, imagine that Alice and Bob want to exchange a key. They
publish their chosen prime p and primitive element g, as well as their public
keys A = ¢® mod p and B = ¢g® mod p. Mallory has rightful access to all this
information, but does not have access to the private keys a and b. Mallory
choses her own private m. She sends g™ mod p to Alice pretending to be Bob
and sends g™ mod p to Bob pretending to be Alice. In this way, she sets up a
shared secret s, = ¢"* mod p with Alice and a shared secret s, = ¢™® mod p
with Bob. Imagine now that Alice wants to send a secure message to Bob. She
encrypts the message using the shared secret s, (which she thinks she’s agreed
upon with Bob). Mallory intercepts the message and decrypts it using s,. To
preserve the ruse, she then re-encrypts the plaintext using the key s; and passes
the resulting ciphertext along to Bob.

To Alice and Bob, it appears as if nothing out of the ordinary has happened
here. What’s worse, Mallory can continue this strategy indefinitely. In fact, she
must. If Mallory were to miss a message, Bob would receive a message from
Alice that had been encrypted with key s,, not with key s; as he’d expected.

One way that Alice and Bob could realize that Mallory was intercepting
their traffic would be to examine how long it takes between Alice’s transmission
and Bob’s reception. This is period is known as latency. If the latency is
much longer than Alice or Bob would’ve expected given conditions on the public
channel, then there may be a man-in-the-middle attack in progress. A simple but
relatively expensive technique builds off this concept. Alice and Bob agree that
in each transmission they will send the result of an time-consuming computation
that the other can verify; we’ll see a collection of specific examples if Section 3.3.
If Alice and Bob notice that the latency is much higher than network conditions
would predict, they can be relatively sure that Mallory is delaying the message’s
arrival as she spends time on the required computation.
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3.2 RSA

The RSA cryptosystem is perhaps the most widely used mathematical security
technology in the world. Rivest, Shamir, and Adelman invented the technique
in the late 1970s, only shortly after Diffie and Hellman introduced the world to
the idea of public key cryptography. While Diffie-Hellman only allows Alice and
Bob to agree on a shared secret, RSA allows Alice and Bob to actually exchange
messages. This increase in utility comes at the cost of increased mathematical
complexity. There are several ideas that we need to master before we can discuss
Rivest, Shamir, and Adelman’s breakthrough in earnest. The first is a rather
old piece of mathematical technology: Euler’s totient function.

Definition 3.2.1. FEuler’s totient function ¢(n) is defined as the number of
positive integers less than n which are coprime to n.

Example 3.2.2. We have ¢(6) = 2 since only 1 and 5 are coprime to 6.

Example 3.2.3. We have ¢(9) = 6 since only 1, 2, 4, 5, 7, and 8 are coprime
to 9

Example 3.2.4. We have ¢(11) = 10 since all integers between 1 and 10 are
coprime to 11.

In the codebase provided with these notes, there is an implementation of
Euler’s totient function. Hopefully, it works in much the way you’d expect:

>> totient(9)
ans =
6

Since the elements that are coprime with n are exactly the units of Z,,, we
have the following result, which is essentially just a conversion of terms.

Theorem 3.2.1. There are ¢(n) units in Z,.

This idea may seem simple if you’ve had a bit of experience with multiplica-
tive inverses in Z,, but it’s actually critical to RSA. Since every element of Z,
is either a unit or a zero divisor, we can use the preceding idea to conclude that
there are n — ¢(n) zero divisors in Z,,. So to compute ¢(n), we can count either
units or zero divisors, whichever is easier. We can use this strategy to prove one
of the building blocks in RSA’s security.

The totients of primes and products of primes are at the heart of RSA. For
the case of a single prime, the totient isn’t much more than a conversion between
definitions.

Lemma 3.2.1. For any prime p, we have ¢(p) = p—1, since all integers between
1 and p — 1 are coprime with p by definition.

Lemma 3.2.2. If p and q are distinct primes, then

o(pq) = ¢(P)o(q) = (p—1)(g — 1).
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Before we dive into the general proof, let’s see a specific example.

Example 3.2.5. We have ¢(15) = ¢(3-5) = (3 —1)(5—1) = 8. To see this,
let’s find all the zero divisors of Zy5. An element of Z15 will be a zero divisor if
it is either a multiple of 3 or a multiple of 5. There are 5-1 = 4 multiples of 3
that are less than 15, namely 3, 6, 9, and 12, and there are 3-1 = 2 multiples of
5 less than 15, namely 5 and 10. So there are (3 — 1)+ (5 — 1) zero divisors in
Zs.5, which implies that there are 3-5—(3—1)—(5—1)—1=15—-2—-4-1=8
units. The final -1 accounts for the zero element.

The general proof follows in exactly the same fashion from the previous
example. We only really need to exchange 3 <+ p and 5 < q.

Proof. A nonzero element in Z,, will be a zero divisor if and only if it is either
a multiple of p or a multiple of ¢. There are p — 1 nonzero multiples of ¢ which
are less than pg, namely

q, 2(]7"'7 (p_]-)q

and ¢ — 1 nonzero multiples of p which are less than pg, namely

P, 2p,..., (g—1)p.
Since every nonzero element that is not a zero divisor is a unit, there are a total
of
pg—(p—1)—(¢g—1)~1=pg—p—q+1=(p-1)(¢g—1)

units in Z,. The final -1 on the left side accounts for the zero element. We
conclude that ¢(pg) = (p — 1)(¢ — 1). O

Euler’s totient function is deeply connected to the idea of order. Like the
totient function, it may be a concept that you have seen bits and pieces of over
the course of other investigations. It’s worth taking the time to really dig into
it in order to make the ideas of RSA more clear.

Definition 3.2.2. The order of an element x in Z, is the smallest nonzero
value of k such that ¥ = 1 mod n. If no such value of k exists, then we say x
has order oo in Z,,.

Example 3.2.6. The element 3 has order 6 in Zz, because
31=3,32=2 3 =6, 3*=4, 3°=5, 3°=1.

Example 3.2.7. The element 2 has order 3 in Zz, because
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In the codebase provided with these notes, there is a function ord(x,n)
which computes the order of an element x in Z,. We can confirm that this
function gives us the values we found by hand earlier.

>> ord(2,7)
ans =
3

>> ord(2,6)
ans =
Inf

One of the most surprising facts about modern cryptography is that many
of the results on which the field rests are quite old. Lagrange’s theorem and
Euler’s theorem weave together the concepts of order of an element x in Z,, and
the totient of n.

Result 3.2.1. (Lagrange’s theorem, proved in 1771) The multiplicative order
of every unit x in Zy, divides ¢(n).

In Example 3.2.6, the order of 3 in Zy is 6 which divides ¢(7) = 6. Similarly,
in Example 3.2.7, the order of 2 in Z is 3 which divides ¢(7) = 6.

Theorem 3.2.2. (Fuler’s theorem, proved in 1763) If a is coprime to n, then
a®™ =1 mod n.

Proof. Since a is coprime with n, it has some finite order k. Then by Lagrange’s
theorem, k divides ¢(n). This implies that kh = ¢(n) for some integer h. Then

a®™ = ' = (aF)" = 1" = 1 mod n. O

3.2.1 Encryption

Bob chooses two distinct, large primes p and ¢, and defines n = pq. He generates
an element e that is a unit in Zg(,). Bob publishes the pair (n,e) as his public
key.

Imagine Alice wants to send a message to Bob. She first asks Bob for his
public information. She then converts her message into a number m in Z,.
Alice sends Bob

¢ =m°® mod n. (3.2.1)
In code, this might take the following form:

function ¢ = RSAencrypter(m,e,n)
¢ = powMod(m,e,n);
end

Notice that the actual implementation of the encryption is quite simple, while
the underlying mathematics is substantially more difficult. This is quite com-
mon in modern cryptosystems; once we have mastered the underlying ideas, the
execution follows quite easily.
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3.2.2 Decryption

Bob receives ¢ = m® from Alice. Since Bob knows p and ¢, he knows ¢(n) =
(p—1)(q¢ — 1). Therefore, he can easily compute d = e~! mod ¢(n). To recover
the plaintext, Bob raises the ciphertext ¢ to the d.

d

c eyd (3.2.2)

=m, (3.2.3)

I
el

Since e and d are inverses modulo ¢(n), we know that ed is multiple of ¢(n)

plus 1 modulo n:
ed =1+ h¢(n) mod n.

Bob can use this fact together with Euler’s theorem to recover the plaintext.

¢ =med = mithe() = m(mh¢(”)) = m(m¢(”))h =m(1)" = m.

3.2.3 Security

Eve knows Bob’s public information n and e, as well as the ciphertext c¢. She
could recover the plaintext m in one of two ways. First, she could compute d
and subsequently arrive at m, just as Bob does. Second, she could directly undo
what Alice has done by directly computing m from m® mod n. As it turns out,
both of these are problems are thought to be very difficult.

In order to determine d = e~! mod ¢(n), Eve would need to know ¢(n). But
since n = pq is the product of two distinct primes, we have ¢(n) = (p—1)(¢g—1).
Currently, there’s no efficient algorithm to compute ¢(n) without this formula.
Hence, to invert e, Eve would need to figure out p and ¢. This is a difficult
proposition called the integer factorization problem. Obviously factoring
n = pq into its primes is easy for small examples like 21 or 33. Moreover, if
p = 2, then you can easily determine ¢q. But in general, for large enough primes
p and ¢ (meaning hundreds of digits, typically), factoring n is very difficult.
Cryptanalysts have successfully attacked RSA when n = 768 bits (roughly 200
decimal digits), and the current industry standard as of 2014 is that n have at
least 1024 bits (roughly 300 decimal digits).

The second piece of security comes for the so-called RSA problem. Cur-
rently, it is very difficult to determine an m such that given n, e, and ¢, we
have ¢ = m® mod n. We could also consider the RSA problem as taking the e
root of ¢ modulo n. In either formulation, the modular nature of the arithmetic
takes an operation that would be fairly straightforward using real numbers and
makes it difficult enough to support an industrial-grade cryptosystem.
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3.3 Cryptographic Hashes

The security of many modern cryptographic techniques rests on the intractabil-
ity of reversing some “easy” operation. In Diffie-Hellman, we saw that while
exponentiating a primitive element ¢ in Z,, is easy, taking the discrete logarithm
to undo this operation is thought to be very difficult. Similarly, in RSA, we saw
that while multiplying distinct primes p and q is easy, factoring n = pq into its
constituent parts is tough. Both the discrete logarithm problem and the integer
factorization problem are examples of a one-way function: an operation that
is easy to perform and difficult to undo. In this section, we’ll see another class of
one-way functions called cryptographic hash functions. These technologies
will open a wealth of applications:

e Suppose you download a large program. Getting even one bit wrong in
the downloading process can cause huge problems when you execute the
program. How can you be sure that you received everything correctly?

e From a little bit more nefarious point of view, suppose that you want
to download a common, free program that you’ve found on a third party
website. How can you be sure that a malicious programmer hasn’t inserted
a very small piece of code into an otherwise valid program that could, for
instance, log all the key strokes you make?

e Imagine that Alice issues Bob a challenge to solve a really tough problem.
How can Alice convince Bob that she’s actually solved the problem, too,
without actually sharing the answer with Bob?

e We've seen that man-in-the-middle attacks should make us cautious of
accepting someone’s identity online. How can Alice convince Bob that
a message she’s sent actually came from her and not from a malicious
middleman Mal?

Normally, we think of a mathematical function as taking an element from
a specified domain as an input and producing an element of a specified range
as an output. For instance, we could think of the function f(z) = 22 as taking
any real number as an input and producing a non-negative real number as an
output. A cryptographic hash function H is similar in a way. The function
H takes any input which can be represented by a string of bits and always
produces a bit string of a particular length. For instance, the SHA-1 algorithm
(which will be discussed later in more detail) always produces a 160-bit output:

>> shal(’Cryptography’)
ans =

b804ec5a0d83d19d8db908572£51196505d09£98

Here each of the 16 possible characters in the output (0, 1, 2,..., 9, a, b,..., f)
each represent 4 bits. This hexadecimal notation is a compact way of writing
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large bit strings: the 160-bit output of SHA-1 can be written with just 160/4

= 40 hexadecimal characters.

We call the output of a cryptographic hash the digest of the input. Note
that for a given hash function, the digest will always have the same length,
regardless of whether the input is a single number, a single word, or an entire

book.
Hash Developer(s) | Digest size (bits) | Attack
Message-Digest 5 (MD5) Rivest 128 Practical
Message-Digest 6 (MDG6) Rivest < 512 None
Secure Hash Algorithm 1 (SHA-1) NSA 160 bits Practical
Secure Hash Algorithm 1 (SHA-256) | NSA 256 bits None

Table 3.1: Popular cryptographic hashes and their security status as of January
2014.

3.3.1 Properties

Just as with the discrete logarithm problem and the integer factorization prob-
lem, we would like for a cryptographic hash function to be easy to compute but
difficult to “undo.” We can make this concept a little more rigorous: given a
hash digest value h produced by a hash function H, we would like it to be diffi-
cult to determine a message m such that H(m) = h. Said yet another way, we
would like any hash function H to be a one-way function. In the hash function
literature, this property is also known as pre-image resistance. Using this
language, the pre-image is the message m and the image is the digest value
h. So the pre-image property requires that it be difficult to find a pre-image
that matches a given image.

Hash functions go a step beyond one-way functions in that they also require
that it be difficult to find two different inputs that lead to the same output.
More formally, a good hash function H should make it difficult to find distinct
my and mg such that H(my) = H(ms). We call such an occurrence a collision,
and this property is generally known as collision resistance. Notice that since
every bit string of length 200 (for instance) has a 160-bit SHA-1 digest, it must
be the case that many inputs leads to the same digest. After all there are 2200
possible inputs and only 2'%° possible outputs, so some inputs must lead to the
same output. Said another way, collisions must happen! Collision resistance
just implies that it’s difficult for us to find them.

Let’s see a consequence of the advantageous properties of good cryptographic
hashes. Consider the following two digests generated by nearly identical mes-
sages:

>> shal (’Cryptography’)
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ans =
b804ec5a0d83d19d8db908572£51196505d09£98
>> shal(’Cryptography!’)

ans =

47e8cd97112£d£810d49£802bdf17cd219e8dbab

While the inputs are almost identical, the outputs are incredibly different! This
is a reflection of the pre-image resistance property. If m; ~ mso (meaning that
the two input bits strings were almost identical) implied that H(m1) ~ H(mz),
we might be able to massage the inputs so that the outputs matched, resulting
in a collision. This method of generating collisions fails if similar inputs are
mapped to very different outputs.

3.3.2 Applications

Suppose a software development company deploys a new version of a popular
program. In order to reach the largest number of end users, the company decides
to post the software not just on its own website, but on third-party sites, as
well. But what’s stopping some nefarious agent from adding some sort of virus
to the company’s legitimate installer and posting this malware-ladened version
for users to download? Technically speaking, absolutely nothing. We can use
the concept of cryptographic hashes to give end users a method for verifying
that the code they downloaded is the same (with very high probability) as the
code the company released.

After finalizing the code that they will ship to consumers, the developers
compute the digest of the entire program using some strong cryptographic hash.
They post the digest h on their website. After downloading the code, an end
user can compute the hash i’ of the entirety of the downloaded code. If h = A/,
then the end user can be very confident that the code they obtained is exactly
the same as the code that the company released. Let’s unpack this claim in a
little more detail.

Now imagine that some malicious developer is trying to insert a virus into the
company’s code. The hacker knows the true hash h. If the hacker changes the
code, then there is a very high probability that the hash will change as well. This
would give the attacker away! In order for the changes to remain undetected, the
hacker would have to find a collision, namely an edited version of the legitimate
program whose hash was identical to h. A good hash will have strong collision
resistance, making finding such collision incredibly difficult. Moreover, if the
hash has strong pre-image resistance, it would be difficult for the attacker to
even find an input which would lead to the digest h, let alone another input
which contained the virus the attacker is trying to spread.

For another example, imagine that Alice wants to challenge Bob to solve a
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tough problem with a unique solution. Before he starts such a tough task, he
wants to have some sort of proof that Alice herself has solved the problem. The
issue here is that if Alice sends the answer itself to Bob, then there’s no reason
for Bob to solve the problem. Let’s imagine that Alice comes up with an answer
a to the problem. She can send H(a), where H is some hash function that
Alice and Bob have agreed upon. Notice that Bob cannot recover a from H (a),
because hashes are one-way functions. When Bob solves his problem, he can
compute the hash of the solution he’s found. If the hash he computes matches
the hash Alice sent, then Alice had very likely solved the problem before she
sent the hash to Bob. After all, it’s much more likely that Alice actually solved
the problem than it is that she found a collision.

3.3.3 Cryptanalysis

To get an idea of how hard it is to find collisions for a given hash function, let’s
think about a seemingly unrelated problem: how likely is it that in a classroom
full of people, at least one pair of people will have the same birthday? These
problems aren’t so unrelated, because we can think of a birthday as a sort of
hash which accepts a person as an input and produces a number from 1 to 365
as its output, namely the day of the year in which the person was born.

For simplicity, let’s assume that birthdays are uniformly distributed across
all days of the year. This is certainly not true, but as we’ll see, this assumption
provides a upper bound on the difficulty of finding a pair of people with the
same birthday; if we introduce the actual lumpiness into birthday distribution,
finding a pair of people that share the same birthday will only get easier. Let’s
also assume that each person’s birthday is independent from every other.

Imagine there are n people in the class, ordered 1 through n. If there are
more than 365 people in the class, then at least one pair has the same birthday.
So let’s assume that n < 365. Person 1 has some birthday. The probability that
person 2 has a different birthday than person 1 is

_ (31
P1=1\365 )"
There are still 365 days to choose from, but only 364 of them lead to person

2 having a different birthday than person 1. The probability that person 1,
person 2, and person 3 all have different birthdays is

_ (364 (363
P2 =365/ \365 )
There are still only 364 valid choices that result in person 2 having a different
birthday than person 1. When we arrive at person 3, there are only 363 choices,
since both person 1 and person 2’s birthdays have been removed from the pool.

Notice that we can simply multiply the two probabilities together because we’re
assuming that each person’s birthday is independently chosen from every other.
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Figure 3.1: Probability that at least one pair of people share the same birthday
as a function of the number of people in the group. Notice in order to have a
50% chance of having a collision, the group size must be roughly 23.

We can continue this chain of logic down to the n!" person. Here, the
probability of all n people having different birthdays is

(364 (363 365 —n+ 1
Prn=1\365 ) \ 365 ) 365 :

This implies that the probability that there is a collision, that is, the probability
that at least one pair of people have the same birthday is

c(n)=1- (g’gg) (ggg) (365;675”1) . (3.3.1)

We can see a plot of this collision probability as a function of n in Figure 3.1.
There are several key features to note. First, as the size of the group increases
towards n = 365, the probability of collision goes to 1. Second, there is a rather
steep increase in collision probability from class size n =~ 5 to n = 30 which then
flattens off as we add more people to the mix. Finally, to achieve a 50% collision
probability we need approximately 23 people in the class. We'll see that this
50% mark is a convenient way to compare across different hashes and attacks.

We can extend this same methodology to the case in which a hash function
has more than 365 possible outputs. Imagine that a hash function H has |H]|
possible outputs. For instance, for a hash function H that always produces 128
bits, we have |H| = 2128,
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Hash output size (bits) | Birthday bound for 50% collision chance
64 5.1540 x10°

128 2.2136 x10'°

256 4.0834 x1038

512 1.3895 %1077

Table 3.2: Birthday bound as hash size increases. Notice that when the hash
output size is doubled, the birthday bound grows by roughly a power of 2.

A careful analysis would show that in order for an attacker to have a 50%
chance of finding a collision, the attacker would need to test roughly 1.2\/@
different inputs. This quantity is known as the birthday bound, and corre-
spondingly, this sort of assault on cryptographic hashes is known as the birth-
day attack. In the case of the actual birthday hash, we have

1.2v/|H| = 1.2/365 ~ 22.9.

This is in good agreement with our qualitative prediction from Figure 3.1.

Table 3.2 shows the birthday bound for several popular hash lengths. As
the hash output size (measured in bits) is doubled, the birthday bound grows
by roughly a power of 2. For instance, the birthday bound for a hash output of
size 64 is “only”

1.2V264 ~ 5.154 x 10°. (3.3.2)

In other words, an attacker would need only check roughly 5 billion inputs in
order to find a collision. While this may sound like a lot, in the age of modern
computation, 5 billion is a drop in the bucket. For this reason, cryptographic
hashes with such small outputs are considered insecure. Even some 128 bit
hashes (for which the birthday bound is roughly 2.2 x 10') have been success-
fully attacked; see for instance MD5 from Table 3.1. The newest generation of
widely accepted hash functions use at least 256 bits, for example, SHA256 and
MD6 from Table 3.1.
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3.4 Digital Signatures

Imagine that Alice wants not only to send Bob a message, but to convince Bob
that no one has tampered with her message in transit. This will require us to
combine our knowledge of encryption technologies and cryptographic hashes.

3.4.1 RSA-based Signature Scheme

Alice wants to send a secure message to Bob. She chooses primes p, and ¢,
and a unit e, in Zgy(,,q,) according to the RSA scheme. She releases nq = paga
and e, as her public keys. She retains p,, ¢, and e;! privately. Similarly,
Bob chooses py and g, and a unit e, in Zyp,q,), and releases n, = ppqp and ey,
publicly. Alice and Bob publicly agree on a hash function H.

Imagine Alice wants to send a message m to Bob. She first computes the
messages digest, h = H(m). She then signs this digest with her private key:

-1
s =h% mod n, (3.4.1)

Here, we consider s to be Alice’s signature on the message m. Alice encrypts
m as usual using Bob’s public key:

¢ =m® mod ny,. (3.4.2)

She transmits both the ciphertext ¢ and the signature s to Bob.
In order to verify Alice’s message, Bob performs the following comparison:

H(ceb_l) mod ny = s° mod ny,. (3.4.3)

If this equation holds, then Bob can be very confident that Alice sent the mes-
sage. If the equation fails to hold, Bob can be very certain that something has
gone wrong.

To see why this works, let’s first assume that Eve did not interfere. Then

¢ =m®% =m mod Np, (3.4.4)

in just the same way as traditional RSA-decryption. Therefore, if nothing ne-
farious has occurred, Bob computes H(ceb_l) = H(m) = h mod ny.

Again assuming that Eve has not interfered with the transmission, the right
side of 3.4.3 gives

¢ = h%C = hmod ng. (3.4.5)

Hence, if Eve has not interfered, then Bob computes the hash digest h in
two different ways, and so Equation 3.4.3 holds.

Since the message Alice sends is encrypted using only Bob’s public key, Eve
could intercept the ciphertext ¢ and replace it with her own message m’ with
associated ciphertext ¢ = (m')® mod np. From Bob’s perspective, this would
look totally normal. Issues start to arise when Bob examines the hash and
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the signature. Notice that H(m’) # H(m), unless Eve has found a way to
generate collisions in the hash function H. This implies that Eve would need
to change the signature Alice sent, as well. Imagine Eve is trying to come up
with a signature s’ that matches her new message m’ with digest »' = H(m').
Eve can’t simply set s’ = (/)% as Alice would’ve done, because e, is Alice’s
private key. So Eve will have to compute a new signature s’ from scratch. She
knows Bob will raise the signature she provides to Alice’s public key, so, in
essence Eve needs to find s’ such that

(s")° = H(m') mod n,. (3.4.6)

This is the familiar RSA problem from Section 3.2. We can conclude with
reasonable certainty that Eve could not successfully forge a signature.

Example 3.4.1. Let’s imagine that Alice wants to send a signed version of
the message m = 6283 to Bob using the RSA-based scheme. Imagine Alice has
chosen p, = 839 and q, = 557, and published n, = p,q, = 467323 and e, = 11.
Furthermore, suppose Bob has chosen p, = 73 and qb = 347, and published
ny = 25331 and e, = 13. The hash function shaO gives a digest of h = 12473.
Alice sends Bob ciphertext ¢ = m® mod n,. We can compute this in Matlab:

>> ¢ = powMod(6283, 13, 25331)

7491

Alice also sends Bob the signature s = hea' mod ng. Again, we can compute
this quantity in Matlab:

>> ealnv = modInv(ea, (pa-1)*(qa-1));
>> s = powMod(h, ealnv, na)

17101
To verify Alice’s signature, Bob first deciphers the ciphertext to recover m:

>> ebInv = modInv(eb, (pb-1)*(gb-1));
>> m = powMod(c, eblInv, nb)

6283

He then compares the shaO hash digest of m,
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>> sha0(6283)
ans =

12473
to Alice’s signature raised to the power of her public key,

>> powMod (s, ea, na)
ans =

12473
Since the two values match, Bob can be very sure that Alice sent the message.

There are two main components that make this and other signature schemes
successful. The first is that the digest h is integral to the verification procedure.
This makes it impossible for Eve to change only the message; she will have to
change the signature as well. Second, the signature depends on Alice’s private
information in a way that makes it impossible for Eve to replicate. Together,
these allow Bob to be confident after verification that Alice is who she says she
is.

3.4.2 DLP-based Signature Scheme

Another signature method is based on the discrete logarithm problem. This
method is commonly known as the ElGamal signature scheme, after its
inventor Taher ElGamal.

Alice and Bob agree on a prime number p and a primitive element g in Z,.
Alice chooses an element a in Z, and keeps this information private. She releases
A = ¢g® mod p publicly.

Imagine Alice wants to send a message m to Bob. She first chooses a nonzero
number k in Z,_;. We’ll see later that it’s very important that Alice choose a
new k each time she wants to send a message to Bob. If she doesn’t, Eve will
be able to easily forge Alice’s signature. Once Alice has chosen k, she computes

r = g mod p. (3.4.7)

Alice next computes the messages digest, h = H(m). She then signs the message
digest with her private key a:

s=(h—ar)k ' mod (p—1) (3.4.8)

Notice that here k=! is the multiplicative of k in Z,_1. Alice transmits both r
and s, along with an encrypted copy of the message to Bob.

To verify Alice’s transmission, Bob first decrypts the ciphertext, recovers the
plaintext, and computes its hash h. He then performs the comparison

g" = r*A" mod p, (3.4.9)
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where A is Alice’s public key. If the two sides of the equivalence match, Bob can
be very confident that Alice is actually the person who sent the message. If the
two sides of the equivalence differ, Bob can be very confident that something
has gone wrong.

To verify that Bob’s comparison actually works, first imagine that Eve has
not interfered with the transmission. We could rearrange Equation 3.4.8 to read

h = sk + ar mod (p — 1) (3.4.10)
= h=14L4p—1)+sk+ar (3.4.11)

Then raising g to the power h gives

g" = gtP—Dsktar nioq g (3.4.12)
= ¢g" PV gk 4o mod p (3.4.13)
=7r°A" mod p, (3.4.14)

where ¢!®=1) =1 mod p through Euler’s theorem.

Now imagine that Eve tries to interfere with the transmission by replacing
Alice’s message m with her own message m’. Unless Eve has worked out a way
to force collisions in H, the hash of her new message m’ will not match the
hash of the original message m. Therefore, Eve must replace Alice’s signature
r and s with her own 7’ and s’. She can’t simply set s’ to be equal to s. To
see why, let’s take another look at Equation 3.4.8. We see that both the digest
h and Alice’s private key a are used in the computation of s. Moreover, these
quantities are “disguised” via multiplication by k~!. Recall that Alice chose k
privately, and chooses a different k for each message she wants to send to Bob.

Example 3.4.2. Suppose Alice and Bob have agreed on p = 937 and g = 7.
We can verify that g is primitive in Zgsz:

>> ord (7, 937)
ans =

936

Imagine Alice wants to send a signed version of the message m = 6283 to
Bob using the DLP-based scheme. Alice chooses a private key, say a = 12, and
releases A = g® mod p = 35 mod p as her public key. The shaO message digest
18

>> h = sha0(6283)
h =

12473
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Alice chooses a random unit k in Zp—1, and a private key. We can verify that
k =11 is such an element:

>> gecd(11, p-1)
ans =
1

Alice then computes r = g¥ mod p and s = (h — ar)k~! mod (p — 1).

>> r = powMod(g, k, p)
r =
5
>> s = mod((h - a*r)*modInv(k, p-1), p-1)
s =
703

Notice that the inverse of k is computed in Zy_1 not Zy.
Upon receiving the ciphertext, Bob first recovers the message m, and then
computes its hash h = H(m). He then compares

>> powMod(g, h, p)
ans =
769
to the alternate expression
>> mod(powMod(r, s, p)*powMod(A, r, p), p)
ans =
769

Since the two values match, Bob can be very sure that Alice did indeed send the
message she claimed.

We’ve claimed that it’s important for Alice to choose a new value of k each
time she sends a message to Bob. Let’s see what happens if she fails to choose a
new k each time. Suppose that Eve happens to know two hashes hy and hy and
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the related signatures s; and so. The way in which Alice forms her signatures
is public knowledge, so Eve knows

s1k+ar =h; mod (p —1) (3.4.15)
sok + ar = he mod (p — 1). (3.4.16)

She can subtract the second equation from the first to obtain
(s1 — s2)k = (h1 — hg) mod (p — 1). (3.4.17)

If (s1 —s2) is invertible in Z,_1, then Eve can solve for k. This is bad enough, but
Eve can further exploit her knowledge. With k, Eve can compute r. Substituting
k and r into s1k + ar = hy mod (p — 1), Eve can solve for Alice’s private key
a. This is incredibly bad! After all, once Eve knows Alice’s private key, she can
start signing things just as if she were Alice! For the rest of the cryptographic
world, there is no functional equivalent between Eve and Alice at all!

This may seem all rather esoteric, but this attack has played out in practice.
The Digital Signature Algorithm is very similar to the ElGamal signature
scheme and has been widely used in industry. In 2010, the PlayStation3 console
used DSA to sign digital content, so that users could be sure that the software
they were installing on their expensive consoles came from Sony, not from some
malicious developer. But Sony failed to choose a new k for each message they
sent to users. A group of hackers known as failOverflow exploited this fact in
order to gain Sony’s private keys. The group was then able to impersonate Sony
on any PS3 box. This tale should reinforce the concept that a cryptosystem is
only as good as its implementation; if we fail to implement things properly, even
a system that appears strong on paper can fail in catastrophic ways.
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3.5 Zero-Knowledge Proofs

We introduce two new characters: Peggy the prover, and Victor the verifier.
Imagine that Peggy has told Victor that she’s invented a machine that can see
through walls. Peggy is understandably protective about her technology, and
does’t want Victor to see or inspect the machine lest he somehow figure out the
secret of how it works. At the same time, Peggy would like to convince Victor
that the machine does in fact do what she claims. How can Peggy prove to
Victor in a verifiable way that she has this secret information?

A demonstration of the technology seems appropriate. Victor sets up a wall
behind which he places either one or two boxes. Let’s assume he decides by
flipping a fair coin. He’'ll then ask Peggy to tell him whether she sees one or
two boxes behind the wall. If Peggy’s machine works, she’ll have no problem
answering correctly. If Peggy’s been bluffing, however, she’ll have to guess. In
this case, she’ll have a 50% chance of fooling Victor. Obviously, Victor doesn’t
want to be tricked. Fortunately, he has a solution. He flips his fair coin again,
places either one or two boxes behind the wall, depending on the coin toss’s
outcome, and asks Peggy to answer again. Again, Peggy has a 50% chance to
guess correctly if her machine doesn’t work. But since Victor’s fair coin flips
are independent of one another, Peggy only has a (1/2)? chance of getting both
guesses correct.

Victor performs k of these rounds. If Peggy’s machine works, she has no
problem responding correctly to all k& challenges. If her machine does not work,
she will guess correctly all k times with probability (1/2)*. Notice that as we’d
expect, the probability that Peggy can fool Victor decreases as k increases. In
fact, it decreases exponentially fast. Hence, by choosing large enough k, Victor
can be as sure as he’d like to be that Peggy is telling the truth.

This toy example gives us some good insights into the advantageous prop-
erties of a zero-knowledge proof. There are three key properties that every
such demonstration should have:

e Completeness: if Peggy is telling the truth, she can convince Victor

e Soundness: if Peggy is not telling the truth, she will fail to fool Victor
with very high probablity

e Zero-knowledge: Peggy does not give any information about how she
knows what she knows to Victor in the act of convincing him

These properties may be a little more involved than they might first appear. For
instance, soundness requires that if Peggy is lying, she fails to fool Victor with
high probability. In the example above, Peggy fails with probability 1 — 2%,
The surprising thing might be that we do not require that Peggy always fail to
fool Victor if she is in fact lying; it’s enough for a zero-knowledge proof that the
she fail most of the time. Typically, we’d like to allow Victor to set his level of
confidence, as was the case in the example above.
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The zero-knowledge condition also has some interesting implications. In the
example above, we stipulated that not only could Victor not examine the inner
workings of Peggy’s machine, but he was not even allowed to see it. After all,
even seeing the size or shape or rough layout of the machine may have given
Victor some information as to how Peggy was accomplishing her feat. This
is the true sense of zero-knowledge: not only is the secret itself not revealed
to Victor, but no information is revealed that could even get Victor closer to
knowing what Peggy knows. While it’s often easy to see that the secret itself
has not been revealed, it’s often more difficult to prove concretely that Victor
can’t somehow use the information provided to him to get closer to the secret.
We’ll see several examples of this over the course of this section.

3.5.1 Schnorr Authentication

Peggy wants to prove to Victor she knows the discrete logarithm of an element
y = g” mod p in Z, without revealing the logarithm x to Victor. We could
imagine, for instance that x is Peggy’s private key, and y is Peggy’s public key.
Then Peggy essentially would like to convince Victor that she knows the private
key x, i.e., that she is in fact Peggy. This process of convincing someone you
are who you say you are is known as authentication. The following authen-
tication protocol which relies on the discrete logarithm problem was developed
by Schnorr in 1991.
Peggy and Victor agree to perform k rounds of the following algorithm:

e Peggy generates random integer r and sends C' = g" mod p to Victor.

e After receiving C, Victor generates a random bit b. If b = 0, he tells Peggy
to reveal r. If b = 1, he tells Peggy to reveal w = z +r mod (p — 1).

e Once he receives the revealed value from Peggy, he verifies that ¢" =
C mod p if his random bit was b = 0, and he verifies that Cy = g* mod p
if his random bit was b = 1.

If Victor’s verification works for all k£ rounds, Victor concludes that Peggy prob-
ably knows the value of . If Victor’s verification ever fails, he concludes that

Peggy is lying.

Example 3.5.1. Imagine Peggy and Victor have agreed on p = 997 and g =
111. Peggy wants to prove to Victor that she knows that 322 = 1113* mod 997
without revealing the exponent x = 34 that would lead to y = 322.

Peggy begins the round by choosing a random r in Zgg7, for instance r = 968.
She then sends C = g" mod p to Victor:

>> C = powMod(g, r, p)
C =

270
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Victor randomly generates a bit b=1. If b =0, he tells Peggy to reveal v, and
if b =1, he tells Peggy to reveal x + r mod p. Given his choice of b =1, Peggy
sends Victor w = x + r mod p:

>> > w =mod(x +r, p - 1)
W=
6

Victor verifies that g* = C'y mod p:
>> mod(C*y, p)
ans =

201
>> powMod(g, w, p)
ans =

201

Since the two quantities match, Victor concludes that Peggy probably knows x.
If instead Victor had chosen b = 0, Peggy would’ve sent the value of r. Victor
would’ve then verified that g" = y mod p.

Completeness: If Peggy knows z, she can correctly respond to either of
Victor’s requests. If Victor’s random bit is b = 0, then Peggy must simply send
r; she can accomplish this regardless of whether she knows x. If Victor’s random
bit is ¢ = 1, then Peggy must send w = z + r mod (p — 1). Notice that since
w=xz+r mod (p—1), we have w = £(p — 1) + = + r for some whole number
£, and so

gw = gf(p—l)—i-m—‘rr (351)
=g/ Ngg" (3.5.2)
=g¢%g" (3.5.3)
= Cymod p (3.5.4)

We move from the second to third equivalence via Euler’s theorem: ¢P~! =
¢®®) =1 mod p.

Soundness: Suppose Peggy does not know z. If Peggy knew that Victor
would reveal b = 0, she could simply choose any r and send C' = ¢" mod p as
her commitment. However, if she sent this value of C' and Victor instead chose
b =1, she would be in trouble, because she would need to a send a value z such
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that ¢* = Cy mod p. But by the assumed difficulty of the discrete logarithm
problem, Peggy would not be able to find such a z.

On the other hand, if Peggy knew that Victor would reveal b = 1, she could
choose a random r and send C' = ¢"y~! mod p as her commitment. This implies
that ¢" = C'y mod p, and so Victor’s verification would work perfectly if he chose
b = 1. However, if Peggy was wrong, and Victor chose b = 0, the value of r she
would send would fail Victor’s verification g" = C mod p.

Since in reality Peggy does not know which value of b Victor will pick, we
should expect that Peggy would fail Victor’s challenge 50% of the time if she did
not in fact know the value of . The probability that Peggy could fool Victor in
k sequential rounds is (1/2)*. By making k large, we can satisfy the soundness
criterion.

Zero-knowledge: In each round, Peggy chooses a new value of r and either
reveals 7 or  + r mod p, depending on Victor’s request. If Peggy choice of r is
random and unrelated to her past choices of r, then Victor gains no knowledge
about the secret value of x, provided we assume that he cannot take the discrete
logarithm of C' = ¢" mod p.

Notice we could’ve written the algorithm in a slightly more compact form:

e Peggy generates random integer r and sends C' = ¢g” mod p to Victor.

e After receiving C, Victor generates a random bit b and sends it to Peggy.
Peggy returns w = r + bx mod (p — 1).

e Once he receives the revealed value from Peggy, he verifies that ¢g¥ =
Cy® mod p.

This makes the proofs of completeness, soundness, and zero-knowledge a little
more compact at the expense of being a little less intuitive. Understanding this
type of notation is important for fully appreciating another of the common appli-
cations of zero-knowledge proofs, the Feige-Fiat-Shamir authentication scheme.

3.5.2 Feige-Fiat-Shamir Authentication

Many commonly used cryptographic systems rely on a trusted third party,
also known as a TTP. A TTP can perform all sorts of interesting and useful
functionalities, including keeping records and certificates of users’ public keys.
In 1988, Feige, Fiat, and Shamir developed a zero-knowledge method in which
a TTP can help facilitate positive identification of one user by another.

Suppose Victor wants to verify Peggy’s identity through a TTP. The TTP
first generates an RSA modulus n = pq for large, distinct primes p and gq.
The TTP also creates a collection of private keys s1, so, ..., Sk, each satisfying
ged(sg,n) = 1 for Peggy. It keeps the associated public keys t; = s? mod n for
1=1,2,...,k on file.

Peggy would like to convince Victor that she knows the private keys s1, s, . ..
without revealing these secret keys to him. Victor begins the transaction by con-
tacting the TTP for Peggy’s public keys. Once Victor has the public keys, Peggy
and Victor agree to complete ¢ rounds to the following algorithm:

) Sk
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Peggy choose a random m € Z,. She sends w = m? mod n to Victor.

e Victor chooses a random bits ¢y, ca, ..., ¢, and sends them to Peggy.
e Peggy computes r = msi's5? ... s;" mod n and sends it to Victor.

Victor computes 2. If r? = w52 ... te*, then Victor accepts Peggy’s
demonstration.

Example 3.5.2. Imagine that the TTP has chosen p = 911 and q = 997 for

its primes, and distributed the secrets s1 = 17 and so = 71 to Peggy. It has

retained the public keys t1 = s? = 289 mod n and ts = s3 = 5041 mod n on file.
In the first round, suppose Peggy choose m = 869363. She sends

>> w = powMod(m, 2, n)

348394

to Victor. Victor in turn generates random bits ¢c; = 1 and co = 0, which he
sends to Peggy. Peggy then computes

r = ms7tsg? mod n (3.5.5)
In Matlab,

>> r =mod(m * s_1"1 * s_270, n)

246899
She sends this value of r to Victor. Victor then verifies that r*> = wt{*t5* mod n.

>> powMod(r, 2, n)
ans =

776496
>> mod(wxt1~1%t27°0, n)
ans =

776496

Since the two values match, Victor concludes that Peggy probably has access to
the private keys s1 and so.
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Completeness: Note that

2 = (ms'sy? ... spt)(msTss? ... s7F) mod n (3.5.6)

= m? (s%)c1 (sg)c2 (sz)ck mod n (3.5.7)

= wt{'t5? ...t mod n. (3.5.8)

Therefore if Peggy has access to the secrets si, so, ..., sk, Victor’s verification
will succeed.

Soundness: Suppose Peggy does not know the secrets si, ss,...,sg. If she

could somehow correctly guess which of Victor’s random bits would be 1, she
could choose a value of m such that Victor’s verification would succeed. How-
ever, since Victor only chooses his random bits after receiving w = m? mod n
from Peggy, Peggy cannot simply choose an m to suit Victor’s revealed random
bits; her choice of m is already encoded in w. Therefore, the best Peggy could
do would be to guess which of the k bits will be 1 and which will be 0. There
is a 27F chance she guesses correctly. Over ¢ rounds, there is a 27%¢ chance
that Peggy will fool Victor into believing that she has access to the secret num-
bers. If there are k = 6 secret numbers and ¢ = 5 rounds, there roughly a 1 in
1,000,000,000 chance that Peggy fools Victor.

Zero-knowledge: Peggy reveals w = m? mod n and r = ms' . .. spF to Vic-
tor. Note that Victor cannot determine m from w due to the difficulty of the
RSA problem. This value of m also masks the secrets hidden in r. So Victor
cannot determine the secrets from the information passed in a single round.
Moreover, since Peggy chooses a new value of m each round, Victor cannot
combine the information from multiple rounds in order to determine the secrets
S1ye+.5Sk-
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3.6

Ethics in Cryptography

3.6.1 Obligations to Customers

Companies must store users’ data to provide basic services. To what extent is a
company ethically required to provide strong security for their users’ sensitive

data?

Selected Readings

1.

Goodin, Dan. “How an Epic Blunder by Adobe Could Strengthen Hand
of Password Crackers” Ars Technica. 1 Nov. 2013, visited 15 April 2014.
Clickable link.

. Henschke, Adam. “Encryption Ethics: Are Email Providers Responsible

for Privacy?” The Conversation. 27 Nov. 2013. 15 April 2014. Clickable
link.

. Schuman, Evan. “Evan Schuman: Starbucks Caught Storing Mobile Pass-

words in Clear Text” Computerworld. 15 Jan. 2014, visited 15 Apr. 2014.
Clickable link.

. Silver, Joe. “Lavabit Held in Contempt of Court for Printing Crypto Key

in Tiny Font [Updated]” Ars Technica. 16 Apr. 2014, visited 8 May 2014.
Clickable link.

Discussion Questions

Can the average user make truly informed decisions about whether a given
cryptographic solution is sound?

If the average user cannot make informed decisions about digital security,
to what extent is a private company obligated to protect them?

What effect does the failure of one website have on the rest of the ecosys-
tem?

If a single failure has a net negative impact on the ecosystem, does a pri-
vate company have an obligation to its peers to implement strong security?

Do repeated, high-profile hacks erode public confidence in cryptography
in general?

There is often a trade-off between security and expense. How can a com-
pany go about deciding where along this security-expense curve to oper-
ate?


http://arstechnica.com/security/2013/11/how-an-epic-blunder-by-adobe-could-strengthen-hand-of-password-crackers/
http://theconversation.com/encryption-ethics-are-email-providers-responsible-for-privacy-20657
http://theconversation.com/encryption-ethics-are-email-providers-responsible-for-privacy-20657
http://www.computerworld.com/s/article/print/9245438/Evan_Schuman_Starbucks_caught_storing_mobile_passwords_in_clear_text_
http://arstechnica.com/tech-policy/2014/04/lavabit-held-in-contempt-of-court-for-printing-crypto-key-in-tiny-font/
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3.6.2 Utility of Hacking

One could argue that allowing the “good guys” to have unfettered access to data
makes us all safer, e.g., by thwarting terrorism. One could also argue that such
access would allow tyrannical governments to more effective persecute their
citizens. To what extent should sovereign powers be allowed access to their
citizens’ digital data and communications ethically?

Selected Readings

1.

Musil, Steven. “Saudi Arabia Announces BlackBerry Ban” CNET. 3 Aug.
2010, visited 15 Apr. 2014. Clickable link.

Chung, Emily. “Wiretap Laws Apply to Text Messages, Court Rules”
CBC News. 27 Mar. 2013, visited 15 April 2014. Clickable link.

Regalado, Antonio. “Cryptographers Have an Ethics Problem” MIT Tech-
nology Review. 13 Sep. 2013, visited 8 May 2014. Clickable link.

Simonite, Tom. “NSA Leak Leaves CryptoMath Intact but Highlights
Known Workarounds” MIT Technology Review. 9 Sep. 2013, visited 15
Apr. 2014. Clickable link.

Snowden, Edward. “Statement by Edward Snowden to Human Rights
Groups at Moscow’s Sheremetyevo Airport” Wikileaks. 12 Jul. 2013,
visited 24 Apr. 2014. Clickable link.

Discussion Questions

Should citizens be allowed to use modern cryptographic tools at all?

If private key cryptography should be legal, is it ethical for the federal gov-
ernment be given access by default to all private keys or other information
necessary to completely decrypt encrypted data?

Is it ethical to perform wide scale surveillance in order to detect rare
events?

If there is a trade-off between privacy and security, how should a populace
go about deciding where along the privacy-security curve to operate?

Should there be a difference in how we allow authorities to collect phone
and/or written records and how we allow authorities to collect digital
records?


http://www.cnet.com/news/saudi-arabia-announces-blackberry-ban/
http://www.cbc.ca/news/technology/wiretap-laws-apply-to-text-messages-court-rules-1.1333670
http://www.technologyreview.com/view/519281/cryptographers-have-an-ethics-problem/
http://www.technologyreview.com/news/519171/nsa-leak-leaves-crypto-math-intact-but-highlights-known-workarounds/
http://wikileaks.org/Statement-by-Edward-Snowden-to.html
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3.6.3 What to do with a break-through

Researchers can sometimes make surprising discoveries, including finding a crit-
ical flaw in the implementation of a seemingly strong cryptosystem or inventing
new mathematics that significantly decreases the difficulty of classically hard
problems, e.g., DLP or RSA. Given such a realization, what is the researcher
ethically required to do with the information she has uncovered?

Selected Readings

1. Schneier, Bruce. “Cryptanalysis of SHA-1” Schneier on Security. 18 Feb.
2005, visited 8 May 2014. Clickable link.

2. Whittaker, Zack. “MD5 Password Scrambler '"No Longer Safe’” ZDNet. 7
Jun. 2012, visited 15 Apr. 2014. Clickable link.

3. Grubb, Ben. “Heartbleed Disclosure Timeline: Who Knew What and
When” The Sydney Morning Herald. 15 Apr. 2014, visited 8 May 2014.
Clickable link.

Discussion Questions

e Are you morally obligated to publicly release any major flaw in a cryp-
tosystem and/or its implementation?

e Is the government morally obligated to publicly release any major flaw in
a cryptosystem and/or its implementation?

e Are you morally obligated to disclose any major breakthrough to your
government first, i.e., before public disclosure?

e In general, is any type of preferential disclosure ethically acceptable?


https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://www.zdnet.com/blog/security/md5-password-scrambler-no-longer-safe/12317
http://www.smh.com.au/it-pro/security-it/heartbleed-disclosure-timeline-who-knew-what-and-when-20140415-zqurk.html
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A.1 Studio 1.1: Communication Systems

(1) What is Shannon’s maxim?

(2) Convert the following text into its associated numeric vector:

Go, Bruins!

(3) Convert the text located in two_cities_short.txt into its associated
vector of numeric values.

(4) Convert the following numeric characters into their associated letters:

[19, 7, 4, 1, 14, 18, 19, 14, 13, 19, 4, 0, 15, 0, 17, 19, 24]

(5) Load the data found in the file communication_systems_numbers_1.mat
by typing load communication_systems_numbers_1.mat in the command line
of Matlab. You should now have a variable called plaintext in your workspace.
(You can verify that this variable is actually there by entering whos into the
command line or by entering the variable name itself into the command line.)
Convert the numeric values in plaintext into their associated letters.
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A.2 Studio 1.2: Matlab

(1) Generate an array of whole numbers from 10 to 20. Multiply the array by
3.5, then add 7. What is the 11" element of the final array?

(2) Write a function that takes an array x as an input and doubles every entry
in x to form y as an output. Call your function arrayDoubler.

(3) Write a function that takes an array x as an input and returns the entry in
the middle of the array if the array has an odd number of entries and returns
the entry just to the left of the middle of the array if the array has an even
number of entries. (Hint: check out the round function)

(4) The factorial of a number n is defined by n! = n(n —1)(n —2)--- (2)(1).
Write a function called factorial that accepts a number n as an input, and
returns the quantity n! as an output. (Hint: use a for loop!)

(5) Write a function that takes an input whole number x. If x is less than 10,
your function should turn a matrix with 3 rows and 2 columns containing only
zeros. If x is greater than or equal to 10, your function should return a matrix
with 2 rows and 3 columns containing only ones. (Hint: check out the functions
zeros and ones.)
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A.3 Studio 2.1: Transposition Ciphers

(1) Encipher the plaintext “I made him some coffee” using a transposition
cipher with key k = 4.

(2) Encipher the plaintext found in earnest_short.txt using a transposition
cipher with key k = 64.

(3) Decipher the ciphertext

THSFI TOMAR HKGIE ISSVM AEIA

assuming a transposition cipher with key k = 3.

(4) Decipher the ciphertext located in ciphertext_transposition_1.txt as-
suming a transposition cipher with key k = 64.

(5) Decipher the ciphertext located in ciphertext_transposition_no_key_1.txt
assuming a transposition cipher with no knowledge of the key. (Hint: to convert
to the pseduocode found in the text, learn about the mod function in Matlab.)
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A.4 Studio 2.2: Caesar Ciphers

(1) Encrypt the following message using a Caesar cipher with key k = 25 by
hand:

THEBA NKERO FFERS HERAB RIBE

(2) Encrypt the plaintext located in text/jungle_short.txt using a Caesar
cipher with key k = 4 using code you have written.

(3) Decrypt the following message assuming a Caesar cipher with key k& = 3
by hand:

WKHBU HDGWK HFKLO GUHQD VWRUB

(4) Decrypt the ciphertext located in text/ciphertext_caesar_1.txt assum-
ing a Caesar cipher with key & = 17 using code you have written.

(5) Decrypt the ciphertext located in text/ciphertext_caesar_no_key_1.txt
assuming Caesar cipher but no knowledge of the key k.

(6) Show that {1,2,...,6} is a group under multiplication modulo 7.
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(7) Show that {1,2,3,4,5} is not a group under multiplication modulo 6.

(8) Suppose we have a group G. Show that a has a unique inverse b. (Hint:
suppose a has two inverses, b and ¢ such that b # ¢, and see if you can get a
contradiction.)

(9) Is the set of all possible fractions, commonly denoted by the symbol Q, a
group under multiplication?
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A.5 Studio 2.3: Affine Ciphers

(1) Is the key pair (k,¢) = (3,2) appropriate in affine ciphering on the English
alphabet?

(2) Perform affine encryption assuming key (k,¢) = (5,3) on the plaintext
located in text/rings.txt.

(3) Perform affine decryption assuming key (k,¢) = (0,7) on the ciphertext
located in text/ciphertext_affine_1.txt.

(4) Perform affine decryption assuming no knowledge of the key on the cipher-
text located in text/ciphertext_affine_no_key_1.txt

(5) Show that (ab) mod n = (@ mod n)(b mod n). (Hint: write a = g,n + 4
and similarly for b.)

(6) Show that the collection of all polynomial functions P is a ring.
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(7) Form a complete table listing all the multiplicative inverse pairs in Zag.
Clearly denote all zero divisors as well.

(8) Show that every nonzero element in Z, has a multiplicative inverse if p is
prime.

(9) Show that while Z,, is never a multiplicative group, the collection of units
Z) is always a multiplicative group.
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(10) We will show that an element is a zero divisor in Z,, if and only if it does
not have an inverse in Z,,.

(a) Suppose that an element x is a zero divisor in Z,. Show that z cannot
have a multiplicative inverse. (Hint: follow the general strategy found taken in
the notes.)

(b) Now suppose that = does not have a multiplicative inverse. Show that
x must be a zero divisor. (Hint: think about zai, zas, ..., za, for all the
elements a; € Z,, and remember that we’ve assumed that there is no a; such
that za; = 1.)
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A.6 Studio 2.4: Polyalphabetic Ciphers

(1) Encrypt the plaintext “Cryptology” using Vigenére encryption with the
key “KEY”.

(2) Decrypt the ciphertext

DLCFM EORCB IASTF 0OV

assuming Vigenere encryption with key “KEY”.

(3) Encrypt the plaintext located in the file text/cryptography_short.txt
using the Vigenere cipher with key “UNBREAKABLE”.

(4) Decrypt the ciphertext located in the file text/ciphertext_polyalphabetic_1.txt
assuming Vigenere encryption with key “UNBREAKABLE”.

(5) Encrypt the plaintext located in text/memphis.txt using a running key
cipher with the text in text/yankee.txt as the key.
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(6) Decrypt the ciphertext located in text/ciphertext_polyalphabetic_2.txt
assuming encryption with a running key cipher with the text in text/yankee. txt
as the key.

(7) Decrypt the ciphertext located in text/ciphertext_polyalphabetic_no_key_1.txt
assuming Vigenere encryption with no knowledge of the key.
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A.7 Studio 3.1: Diffie-Hellman

(1) Is 2 primitive modulo 13?

(2) Is 3 primitive modulo 137

(3) Assume that Alice and Bob perform Diffie-Hellman key exchange using
prime p = 61 and primitive element g = 10. Imagine that Alice’s private key is
a = 7 and Bob’s is b = 50. Compute the public message Alice sends Bob, the
public message Bob sends Alice, and the shared secret number at the end of the
exchange.

(4) Assume that Alice and Bob perform Diffie-Hellman key exchange using
prime p = 997 and primitive element g = 11. Imagine Alice’s private key is
a = 812 and Bob’s is b = 903. Compute the public message Alice sends Bob,
the public message Bob sends Alice, and the shared secret number at the end
of the exchange.

(5) Find two widely accepted technologies, current or formerly in use, that use
Diffie-Hellman key exchange.
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A.8 Studio 3.2: RSA

(1) Show that every zero divisor has infinite order. (Hint: suppose it has order
k and try to find a contradiction.)

(2) Show that every unit in Z,, has order less than or equal to ¢(n). (Hint: sup-
pose a unit x has order greater than ¢(n), and consider the powers z', 22, ..., z#("))

(3) Show that ¢(p?) = p? — p if p is prime.

(4) Prove the following claim: if an element z has order ¢(n) in Z,, then x is
a primitive element in Z,,.
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(5) Imagine an RSA cryptosystem is created with primes p = 991 and ¢ = 113.

(a) Imagine Alice chooses e = 50. Is this value appropriate? Why or why
not?

(b) Imagine Alice now chooses e = 53. Verify that this choice is acceptable.
What information does Alice publish?

(c) Imagine Bob wants to send the message m = 100. Is this value OK?
Why or why not?

(d) What ciphertext does Bob send across the channel given the numbers
we’ve decided on so far?

(6) Imagine Bob has chosen p = 937, ¢ = 683, and e = 383179.
(a) Is Bob’s choice of e appropriate? Why or why not?

(b) Alice sends Bob ¢ = 170133. What is the associated plaintext?
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A.9 Studio 3.3: Cryptographic Hashes

(1) Generating truly random bits is very difficult. In practice, we often settle
for pseudorandom bits, meaning that the bits “look” random but are generated
by a deterministic (i.e., non-random) procedure. Explain how a hash function
could be used to generate pseudorandom numbers.

(2) Passwords are often hashed before they are stored on a company’s website.

(a) Imagine you provide your password when you try to login to a website.
The web server will compare the password you provide to the hashed password
it has associated with your account. Use the properties of hashes to explain why
this procedure will allow you to login if and only if you've provided the correct
password (with very high probability).

(b) Why wouldn’t the company just compare the password you provide to
a plaintext version of your password it stores on its servers?

(c) Experienced hackers know that companies store their passwords in hashed
form. To speed up their attacks, hackers will compute the hashes of a bunch of
common passwords (e.g., “password”, “1234”, “asdf”). This collection of pre-
computed hashes is called a rainbow table. (Don’t believe the silly name? Check
out https://www.freerainbowtables.com)Suppose a hacker manages to obtain a
company’s list of hashed passwords. How can a rainbow table be used to further

compromise security?
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(d) To mitigate the effectiveness of rainbow attacks, many websites use
salts. A salt is a random number that is appended before your password before
hashing. For a concrete example, imagine that you register at a new website.
The server will generate a random number and assign this number as your
account’s salt. The server will then store H ([salt password]). Explain how the
use of salts makes rainbow tables far less effective, even if the hacker happens
to know the salt that was applied to each password.

(3) One of the problems with using digital photography for collecting criminal
evidence is the possibility of tampering and digital editing. Explain how a
cryptography hash could be used to show that a photo has not been altered
since it was taken. (Hint: feel free to use the time stamp of when the photo was
taken.)

(4) In a silent auction, bidders write down their bids for an item and submit
these bids to the auctioneer. At the end of the silent auction, the highest bid
wins. Hence, there is a strong incentive to be the highest bid, but as little as
possible over the runner-up.

One problem with silent auctions is that the auctioneer can collude with an
accomplice by telling her the highest bid. This allows the accomplice to win the
auction without overspending by any more than they must.

It would be great if each bidder had to commit publicly to their bid. The
problem is that if they reveal their bid directly, it defeats the point of a silent
auction. Devise a scheme using cryptographic hashes that allows a bidder to
show the public that they have locked in their bid. Your scheme should also
prevent other bidders from figuring what exactly the bid was, even if they know,
for instance, that the only possible bids are increments of $10.
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A.10 Studio 3.4: Digital Signatures

(1) Imagine Alice wants to send a signed version of the message Meet at midnight
to Bob using the RSA-based signature scheme.
(a) Use sha0 to compute the message digest h of Alice’s message.

(b) If Alice chooses p, = 911, ¢, = 937 and e, = 11, what signature s
associated to the given message does she send Bob?

(2) Imagine now that Alice wants to send the numeric message m = 123456789
to Bob using an RSA-based signature scheme. Imagine that Alice has chosen
pa = 911, g, = 937 and e, = 11, and that Bob has published n;, = 27491 and
ep = 13.

(a) Use sha0 to compute the message digest h of Alice’s message.

(b) What is the ciphertext that Alice sends Bob?

(c) What is the signature that Alice sends Bob?
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(3) Imagine Alice has published n, = 853607 and e, = 11, and Bob has chosen
py = 37, qp = 743, and e, = 13, both using the RSA scheme. Bob receives
¢ = 2409 and s = 790832 from someone claiming to be Alice. Should Bob
believe that this message actually came from Alice?

(4) Imagine Alice has published n, = 853607 and e, = 11, and Bob has chosen
pp = 37, @y = 743, and e, = 13, both using the RSA scheme. Bob receives
¢ =182 and s = 46937 from someone claiming to be Alice. Should Bob believe
that this message actually came from Alice?
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(5) Imagine Alice wants to send Bob a signed version of the message Meet at midnight
using the DLP-based signature scheme with primitive element g = 7 in Zgs7.
Assume that Alice and Bob have agreed to use the shaO hash. Alice’s private key

is a = 117, and for this transmission, she has chosen k£ = 17. What information

does Alice send Bob?

(6) Imagine now that Alice wants to send Bob a signed version of the message
m = 1234 using the ElGamal signature scheme. Assume that Alice and Bob
have agreed on g = 2, p = 1117, and sha0 as their hashing algorithm.

(a) Show that Alice and Bob’s choice of g is appropriate given their choice
of p.

(b) Imagine that Alice has published A = 501 as her public key. If Bob re-
ceives message m = 1234 and signature (r, s) = (539, 37) from a person claiming
to be Alice, can Bob conclude that the message actually came from Alice?

(c) Imagine that Alice has published A = 501 as her public key. If Bob
receives message m = 5678 and signature (r,s) = (539,542) from a person

claiming to be Alice, can Bob conclude that the message actually came from
Alice?
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(d) Imagine that Alice has published A = 501 as her public key. Suppose
Eve has determined that Alice is failing to choose a new value of k each time

she sends a message to Bob. If Eve has collected two hash-signature pairs
(h1,s1) = (12473,69) and (hg, s2) = (3378,446), what is Alice’s private key a?
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A.11 Studio 3.5: Zero-Knowledge Proofs

(1) A friend of yours is colorblind and so cannot tell his red socks from his
green socks. In fact, he believes that they are actually the same color. You keep
trying to tell him that the colors are different, that he looks like a fool with
them on, and that he needs to get rid of them. Your friend thinks that you're
trying to play a joke on him with all of this “different colors” business.

Fortunately, you've devised a plan to break the stalemate. You give him
both a red and a green sock, and clearly tell him which is which. You tell him
to randomly choose whether or not to switch the socks behind his back. He
then reveals each hand to you, and you tell him which hand contains which
sock. You can repeat the process over and over until your friend is sure you're
telling the truth.

(a) Argue that this scheme is complete.

(b) Argue that this scheme is sound.

(c) Argue that this scheme is zero-knowledge.



Appendix A. Studio problems

(2) Imagine you are a white hat hacker (the good kind) and have been com-
missioned to find flaws in a company’s new cryptographic scheme. You’ve found
one, but you don’t want to reveal the details until after the company has paid
you. You need a way to convince them that you’re telling the truth given these
restrictions. Describe a solution to this problem, and prove that it is complete,
sound, and zero-knowledge.
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B.1 Studio 1.1 Solutions: Communication Sys-
tems

(1) What is Shannon’s maxim?

Shannon’s maxim tells us to err on the side of caution by assuming the
the eavesdropper Eve knows how Alice and Bob have chosen to encrypt their
messages. We also assume that Eve does not know the secret key that Alice
and Bob have agreed upon.

(2) Convert the following text into its associated numeric vector:

Go, Bruins!
We can either do this by hand via individually converting each letter, or we can
use the function lettersToNumbers provided.

>> lettersToNumbers(’Go, Bruins!’)
ans =

6 14 1 17 20 8 13 18

Notice that lettersToNumbers takes out the comma, the space, and the excla-
mation point for us.

(3) Convert the text located in two_cities_short.txt into its associated
vector of numeric values.

Since this text is so long, it’s not really feasible to convert each character by
hand. The loadText function converts a text file into its associated vector of
numbers:

>> plaintext = loadText(’../text/two_cities_short.txt’);

Your file location could differ depending on where you've put your text files.

(4) Convert the following numeric characters into their associated letters:
[19,7,4,1,14,18,19,14,13,19,4,0,15,0,17,19,24]

We could convert each of these numbers by hand, or we could use the function

numbersToLetters to help us out.

>> numbersTolLetters([19,7,4,1,14,18,19,14,13,19,4,0,15,0,17,19,24])

THEBO STONT EAPAR TY

(5) Load the data found in the file communication_systems_numbers_1.mat
by typing load communication_systems_numbers_1.mat in the command line
of Matlab. You should now have a variable called plaintext in your workspace.
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(You can verify that this variable is actually there by entering whos into the
command line or by entering the variable name itself into the command line.)
Convert the numeric values in plaintext into their associated letters.

We begin by loading the data. (Your file name could be different depending
on where you’ve put your text files.)

>> load ../text/communication_systems_numbers_1.mat

We can then verify that the variable plaintext is in place.

>> whos
Name Size Bytes Class Attributes
plaintext 1x516 4128 double

In general, the Matlab function whos shows you all variables that are currently
in your workspace.

We can then print the characters associated with the first 100 numbers lo-
cated in plaintext

>> numbersToLetters(plaintext(1:100));
ALLST ATESA LLPOW ERSTH ATHAV EHELD ANDHO LDRUL EOVER MENHA
VEBEE NANDA REEIT HERRE PUBLI CSORP RINCI PALIT IESPR INCIP

It reads “All states all powers that have held and hold rule over men have been
and are either republics or principalities princip...”
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B.2 Studio 1.2 Solutions: Matlab

(1) Generate an array of whole numbers from 10 to 20. Multiply the array by
3.5, then add 7. What is the 11" element of the final array?

EDU>> x = 10:20;
EDU>> y = 3.5%x + 7;
EDU>> y(11)

ans =

7

(2) Write a function that takes an array x as an input and doubles every entry
in x to form y as an output. Call your function arrayDoubler.

function y = arrayDoubler(x)
y = 2%x;
end

(3) Write a function that takes an array x as an input and returns the entry in
the middle of the array if the array has an odd number of entries and returns
the entry just to the left of the middle of the array if the array has an even
number of entries. (Hint: check out the round function)

function middleValue = getMiddleValue(x)
middleIndex = round(length(x)/2);
middleValue = x(middleIndex) ;

end

(4) The factorial of a number n is defined by n! = n(n — 1)(n — 2)---(2)(1).
Write a function called factorial that accepts a number n as an input, and
returns the quantity n! as an output. (Hint: use a for loop!)

function y = factorial(n)

y=1;

for i = 1:n
y = y*i

end

end

(5) Write a function that takes an input whole number x. If x is less than 10,
your function should turn a matrix with 3 rows and 2 columns containing only
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zeros. If x is greater than or equal to 10, your function should return a matrix
with 2 rows and 3 columns containing only ones. (Hint: check out the functions
zeros and ones.)

function mat = myFunc(x)

if x < 10

mat = zeros(3,2);
elseif x >= 10

mat = ones(2,3);
end
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B.3 Studio 2.1 Solutions: Transposition Ciphers

(1) Encipher the plaintext “I made him some coffee” using a transposition
cipher with key k = 4.

Using padding of all As, the ciphertext reads

THMFM IEEAM CEDSO AEOFA

(2) Encipher the plaintext found in earnest_short.txt using a transposition
cipher with key k = 64.

Suppose we have a function called transpositionEncrypter(plaintext, key)
which performs transpositional encryption on input plaintext using the input
key as the key. The following commands then perform the desired encryption:

>> plaintext = loadText(’../text/earnest_short.txt’);
>> ciphertext = transpositionEncrypter(plaintext, 64);

The first 100 characters of ciphertext read

>> numbersToLetters(ciphertext(1:100))
FFSAO HLAAM ASCOE NTIER GSLNE TENRS DPRTL HADDS ARADA RWUKE
AOSTL OGHLY TNOEI TENWE GLRES OEBPO HSSYE HLBDH LEHEB LAOWT

(3) Decipher the ciphertext
THSFI TOMAR HKGIE ISSVM AEIA

assuming a transposition cipher with key k£ = 3.

After removing the padding, the plaintext reads: “I FORGIVE HIM HIS
MISTAKES.”

(4) Decipher the ciphertext located in transposition_ciphertext_1.txt as-
suming a transposition cipher with key k = 64.

Suppose we have a function called transpositionDecrypter (ciphertext, key)
which performs transpositional decryption on input ciphertext using the input
key as the key. The following commands then perform the desired decryption:

>> ciphertext = loadText(’../text/transposition_ciphertext_1.txt’);
>> plaintext = transpositionDecrypter(ciphertext, 64);

The first 100 characters of ciphertext read

>> numbersToLetters(plaintext(1:100))
TOSHE RLOCK HOLME SSHEI SALWA YSTHE WOMAN IHAVE SELDO MHEAR
DHIMM ENTIO NHERU NDERA NYOTH ERNAM EINHI SEYES SHEEC LIPSE
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(5) Decode the ciphertext located in transposition_ciphertext_no_key_1.txt
assuming a transposition cipher assuming that you do not have knowledge of
the key.

Let’s assume that we have a piece of code called transpositionDecrypter (ciphertext, key)
which deciphers the input ciphertext using the input key.

We're going to guess and check different keys in a systematic way. We know
that the length of the ciphertext must be a multiple of the key. The length
of the ciphertext is 572. The divisors of the ciphertext length are 1, 2, 4, 11,
13, 22, 26, 44, and so on. If the key were &k = 1, the ciphertext would be the
plaintext, which wouldn’t be a very good thing. So the divisors 2 and larger
are the only possible keys if the transposition enciphering has been performed
correctly.

We could check each of these individually and arrive at the correct conclu-
sion. We could also write a quick piece of code to automate this process. There
is one possible solution:

function transpositionDecrypterTrialAndError (ciphertext)
for key = 2:20
if mod(length(ciphertext) ,key) ==
key
guess = transpositionDecrypter (ciphertext, key);
numbersToLetters(guess(1:50)) % print only the first part of the plaintext
end
end

The if statement at the beginning of the loop makes sure that the ciphertext
length is a multiple of the key. If this condition does not hold, we continue on
to the next iteration of the loop. Running this code on the cipher text produces
the following:

key = 2
IRTOG TOEEO HATWT PEOYG ITSAL TSHMN PUTLE EDREE DTOIC HWTFA

key = 4
ITGOE HTTEY ISLSM PTEDE DOCWF SEEGH EHOSM FFTTL LNRGO HYHHE

key = 11
ITASS HLTCN HRSCI HOBTR TOHEH NYLAT IEFAD HHNHG EOHHI RAOUA

key = 13
ITWAS SEVEN OCLOC KOFAV ERYWA RMEVE NINGI NTHES EEONE EHILL

We can see that the first 3 attempts give gibberish as the plaintext. But k£ = 13
gives us a nice, English sentence as an output: “It was seven o’clock of a very
warm evening in the Seeonee hill...” Notice that proper names can be a little
confusing. The chances of this happening if kK = 13 were in fact not the actually
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key are very, very small. We can therefore conclude with a reasonable amount
of certainty that this is indeed the plaintext.
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B.4 Studio 2.2 Solutions: Caesar Ciphers

(1) Encrypt the following message using a Caesar cipher with key k = 25 by
hand:

THEBA NKERO FFERS HERAB RIBE

Notice that adding 25 is the same thing as subtracting 1 modulo 26, because
—1 = 25 mod 26. Therefore, we shift each letter in the plaintext back by 1 in
order to form the ciphertext.

SGDAZ MJDQN EEDQR GDQZA QHAD

(2) Encrypt the plaintext located in text/jungle_short.txt using a Caesar
cipher with key k = 4 using code you have written.

The first 100 characters read

MXAEW WIZIR SGPSG OSJEZ IVCAE VQIZI RMRKM RXLIW IISRI ILMPP
WALIR JEXLI VASPJ ASOIY TJVSQ LMWHE CWVIW XWGVE XGLIH LMQWI

(3) Decrypt the following message assuming a Caesar cipher with key k = 3
by hand:

WKHBU HDGWK HFKLO GUHQD VWRUB
The plaintext reads

THEYR EADTH ECHIL DRENA STORY

(4) Decrypt the ciphertext located in text/ciphertext_caesar_1.txt assum-
ing a Caesar cipher with key & = 17 using code you have written.

The first 100 characters of the plaintext read

THEPR INCEC HAPTE RIHOW MANYK INDSO FPRIN CIPAL ITIES THERE
AREAN DBYWH ATMEA NSTHE YAREA CQUIR EDALL STATE SALLP OWERS

(5) Decrypt the ciphertext located in text/ciphertext_caesar_no_key_1.txt
assuming Caesar cipher but no knowledge of the key k.

Suppose we have a function caesarDecrypter which takes inputs ciphertext
and key and produces an output plaintext as their names suggest they do.
Since the key space is just {2,3,...,25}, we need only use a for loop to cycle
through the possible keys and monitor the output. When we see an output that
reads in plain English, it is overwhelmingly likely that it represents the correct
key being used.
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function caesarDecrypterTrialAndError()
ciphertext = loadText(’../text/ciphertext_caesar_no_key_1.txt’);

for key = 2:25
guess = caesarDecrypter (ciphertext, key);
numbersToLetters (guess(1:50))

end

end

We see that when k& = 13, the decryption function produces

INMAT HEMAT ICSAG ROUPI SASET OFELE MENTS TOGET HERWI THANO

(6) Show that {1,2,...,6} is a group under multiplication modulo 7.

We have identity element 1. We could confirm by testing all pairs that the
product of any two elements taken modulo 7 is in the set. Associativity follows
from the fact that multiplication of integers is associative. The hardest part
is inverses. The set is small enough we can compute the inverses by trial and
error:

171 =1,2"1=4,31'=5 61 =6.

Notice that if 37! = 5, then 57! = 3, so this list is complete. Also notice that
we can get some perhaps unexpected behavior, such as an element being its own
inverse. This is OK!

We conclude that the set {1,2,...,6} is a group under multiplication.

(7) Show that {1,2,3,4,5} is not a group under multiplication modulo 6.

Taking 2 - 3 mod 6 we see the set is not closed under multiplication modulo
6. Moreover, we see that there is no element in the set that acts as an inverse
for the element 2 (or the element 3 for that matter). We will see that these
two facts are not unrelated. We conclude that the set is not a group under
multiplication modulo 6.

(8) Suppose we have a group G. Show that a has a unique inverse b. (Hint:
suppose a has two inverses, b and ¢ such that b # ¢, and see if you can get a
contradiction.)

Let’s follow the hint and assume that a +¢ =0, a +b =0 and b # ¢. Then

b= b+ 0 (definition of the identity)
=b+ (a+¢) (a and c are inverses by assumption)
= (b+ a) + ¢ (associativity)

= ¢ (a and b are inverses by assumption)
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But we have assumed that b # ¢. Therefore, we have a contradiction that shows
that our initial assumption that a has two distinct inverses must be incorrect.

(9) Is the set of all possible fractions (also called rational numbers), com-
monly denoted by the symbol Q, a group under multiplication?

It would seem that everything checks out until we consider the element 0.
Since the identity element under multiplication is 1, we would need for there to
be a number z such that 2(0) = 1 in order to full the invertibility requirement
of groups. No such rational number exists.
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B.5 Studio 2.3 Solutions: Affine Ciphers

(1) Is the key pair (k,£) = (3,2) appropriate in affine ciphering on the English
alphabet?

If we stick with the notation that (k,¢) = (3,2) produces ciphertext ¢ =
Ip + k, then no, the pair is not appropriate. This arises from the fact that
ged(€ = 2,26) = 2 > 1. This implies that 2 is a zero divisor in Zsg, and so has
no inverse. Bob can therefore not uniquely decode the ciphertext into plaintext.

(2) Perform affine encryption assuming key (k,¢) = (5,3) on the plaintext
located in text/rings.txt.

The first 100 characters read

DSPFK ARPFK DLHFS OPVER HYRLD UDLFM MZDSF MXRIE FFEDS XDHFS
FMXRI EFDLH KENLK NERTD KAVYR EFKDV SHXRS REFMD CDSXK ARFED

(8) Perform affine decryption assuming key (k,¢) = (0,7) on the ciphertext
located in text/ciphertext_affine_1.txt.

The first 100 characters read

THEAF FINEC IPHER ISATY PEOFM ONOAL PHABE TICSU BSTIT UTION
CIPHE RWHER EINEA CHLET TERIN ANALP HABET ISMAP PEDTO ITSNU

The text above reads “The affine cipher is a type of mono alphabetic substitution
cipher wherein each letter in an alphabet is mapped to its nu...”

(4) Perform affine decryption assuming no knowledge of the key on the cipher-
text located in text/ciphertext_affine_no_key_1.txt

Suppose we have a function called affineDecrypter that does what you'd
expect given our work so far. Then a brute force attack algorithm might look
like the following;:

function affineDecrypterTrialAndError()
clc
ciphertext = loadText(’../text/ciphertext_affine_no_key_1.txt’);

for k = 1:25
for ell = 1:25
if gcd(ell,26) ==
guess = affineDecrypter(ciphertext, k, ell);
k, ell, numbersToLetters(guess(1:50))
end
end
end
end
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This function produces a lot of output, and sifting through it is time-consuming.
You might do a “Find” for common words like THE to see if any of the candidates
make sense. We observe a promising candidate at (k,¢) = (7,9).

k =

ell =

MEMPH ISISA CITYI NTHES OUTHW ESTER NCORN EROFT HEUSS TATEO

The text above reads, “Memphis is a city in the southwestern corner of the state
o....” Looks good!

(5) Show that (ab) mod n = (a mod n)(b mod n). (Hint: write a = g,n + 4
and similarly for b.)

We can write a = g,n + r, and b = ¢un + r,. Then

(ab) = (gan + 1) (qon + 75) (B.5.1)

= qaqbn2 + qanTp + Taqpn + TaTp.

Since any multiple of n is equivalent to zero modulo n, the first three terms on
the right are zero. The desired result follows directly:

(ab) = rarp (B.5.3)
= (a mod n)(b mod n). (B.5.4)

(6) Show that the collection of all polynomial functions P in one variable x is
a ring.

There are several things to verify here, but most of them are easy. First,
note that the elements of this ring are polynomials functions, not numbers.
That may look strange, since it’s probably the first time you’ve seen it. But
it’s mathematically perfectly fine. In fact, thinking about functions in terms of
rings can be very helpful, for instance in discussion of error control codes.

Suppose p(z) and ¢(z) are two polynomial functions. Their sum p(z) + g(x)
is a polynomial, as is their product p(x)q(z). Therefore P is closed under both
addition and multiplication. Moreover, both addition and multiplication are
associative and commutative, as we know by the way we’ve always done poly-
nomial arithmetic. There exists the multiplicative identity element 1, and the
additive identity 0, both of which are polynomials, albeit very simple ones.
There exist additive inverse of every polynomial p(z), name —p(z). Finally,
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multiplication distributes across addition. (Note that there are not multiplica-
tive inverses for every element, but we don’t need this property for the set to be
a ring.) We conclude that P is indeed a ring, and a commutative one at that.

(7) Form a complete table listing all the multiplicative inverse pairs in Zog.
Clearly denote all zero divisors as well.

The zero divisors are 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, and 24. The
units and their inversesare 17! = 1,371 =9, 571 =21, 117! =19, 17711 =23,
Notice that since inverses come in pairs, we only need to list each number once.
We could definitely compute these inverse pairs by hand, but another, perhaps
easier way, would be with the provided function

>> modInv (17, 26)
ans =

23

Varying x will produce the desired results.
(8) Show that every nonzero element in Z, has a multiplicative inverse if p is
prime.

By definition, a prime p is a number such that ged(p, ¢) = 1 for all 0 < ¢ < p.
The property therefore follows directly from the fact (which we proved in the
text) that if ged(p, ¢) = 1, then ¢ has a multiplicative inverse in Z,.

(9) Show that while Z,, is never a multiplicative group, the collection of units
Z is always a multiplicative group.

The full ring is never a multiplicative group due to the presence of 0. The
units are a group. We can verify the axioms:

e Multiplication amongst the units is associative because it is in the larger
ring

e There exists an identity, namely 1
e By the definition of units, every element in the set has an inverse

The only axiom that remains to be verified is closure, namely the idea that a
unit times a unit is another unit. Suppose we have two units a and b. We want
to show that the product ab has an inverse (ab)~!. Playing around for a while
would produce (ab)~! = b~1a~!. Let’s verify

(b~ ta N (ab) = b Hata)b=b"tb = 1. (B.5.5)

So the set of units is closed under multiplication. We conclude that Z) is a
group under multiplication modulo n.
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(10) We will show that an element is a zero divisor in Z,, if and only if it does
not have an inverse in Z,,.

(a) Suppose that an element x is a zero divisor in Z,. Show that z cannot
have a multiplicative inverse. (Hint: follow the general strategy found taken in
the notes.)

If = is a zero divisor, then there exists some nonzero y such that zy =
0 mod n. Suppose for contradiction that z also has a multiplicative inverse z—!
such that zz~! = 1 mod n. Then

zy =0 (B.5.6)
s lzy=2"1-0 (B.5.7)
y=0. (B.5.8)

But we had already assumed that y was nonzero. Therefore, it cannot be the
case that = has a multiplicative inverse.

(b) Now suppose that z does not have a multiplicative inverse. Show that
x must be a zero divisor. (Hint: think about zay, zas, ..., za, for all the
elements a; € Z,, and remember that we’ve assumed that there is no a; such
that za; = 1.)

Let’s follow the hint’s direction. We have n — 1 different products of the
form ae;, where both a and e; are nonzero. Since x doesn’t have a multiplica-
tive inverse, none of these products are equal to 1 modulo n. Therefore these
products can assume only n — 2 of the n — 1 nonzero values in Z,. Since there
are n — 1 products and only n — 2 possible values the products can assume, there
must be at least two products that are the same value. Let’s call these ae; and
ae;, where e; # e;. Symbolically,

ae; = ae; (B.5.9)
ale; —e;j) = 0. (B.5.10)

The last line follows from the distributive property of rings. Since e; # e;, the
difference e; — e; is nonzero, and therefore a is a zero divisor.
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B.6 Studio 2.4 Solutions: Polyalphabetic Ciphers

(1) Encrypt the plaintext “Cryptology” using Vigenére encryption with the
key “KEY”.

The ciphertext c is computed by adding vertically modulo 26 the numerical
representations of the array

CRYPTOLOGY
KEYKEYKEYK

We conclude that the ciphertext reads.

MVWZX MVSEI

(2) Decrypt the ciphertext
DLCFM EORCB IASTF 0OV

assuming Vigenere encryption with key “KEY”.

The plaintext p is computed by subtracting the second line of the following
array from the first modulo 26:

DLCFMEORCBIASTFOV
KEYKEYKEYKEKEYKEY

We conclude the plaintext reads “The Vigenere cipher.”

(3) Encrypt the plaintext located in the file text/cryptography_short.txt
using the Vigenere cipher with key “UNBREAKABLE”.

The first 50 characters read

WEZGX OQRBA LSBST VYZTP WSALG ISMQR FPOJG IZHDO NTPGL RURRD

(4) Decrypt the ciphertext located in the file text/ciphertext_polyalphabetic_1.txt
assuming Vigenére encryption with key “UNBREAKABLE”.

The first 50 characters read
ITWAS THESE ASONO FDARK NESSI TWAST HESPR INGOF HOPEI TWAST

We conclude the plaintext begins “It was the reasons of darkness it was the
spring of hope it was t...”

(5) Encrypt the plaintext located in text/memphis.txt using a one-time pad
with the text in text/yankee.txt as the key.

The first 50 characters of the ciphertext read

UEYPU IEMJI EIGGE NLISJ BUGKN ISKIU VPVRE XWCWW PRNZW LTTXS
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(6) Decrypt the ciphertext located in text/ciphertext_polyalphabetic_2.txt
assuming encryption with a one-time pad with the text in text/yankee.txt as
the key.

The first 50 characters of the plaintext read

INMAT HEMAT ICSAN DMORE SPECI FICAL LYINA LGEBR AARIN GISAN

(7) Decrypt the ciphertext located in text/ciphertext_polyalphabetic_no_key_1.txt
assuming Vigenere encryption with no knowledge of the key.
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B.7 Studio 3.1 Solutions: Diffie-Hellman

(1) Is 2 primitive modulo 13?

If all numbers less than 13 are coprime with 13, it must be the case that
every number from 1 to 12 can be expressed as a power of 2 modulo 13. We
can simply compute all the powers and see if this is true. We can perform each
computation individually, or use Matlab to compute them all at once.

>> mod(2.7[1:12],13)
ans =

2 4 8 3 6 12 11 9 5 10 7

Recall that .~ performs element-wise exponentiation in Matlab. Also note that
this code will not execute without the seemingly innocuous period before the
circumflex.

(2) Is 3 primitive modulo 13?

If all numbers less than 13 are coprime with 13, it must be the case that
every number from 1 to 12 can be expressed as a power of 3 modulo 13. We
can simply compute all the powers and see if this is true. We can perform each
computation individually, or use Matlab to compute them all at once.

>> mod(3."°[1:12],13)
ans =

3 9 1 3 9 1 3 9 1 3 9

Recall that .~ performs element-wise exponentiation in Matlab. Also note that
this code will not execute without the seemingly innocuous period before the
circumflex.

Notice how the powers of 3 begin to repeat modulo 13. In fact, after we see
the element 1, we know the sequence will repeat. Therefore, we can be sure that
some elements, like 2 for instance, cannot be expressed as a power of 3 modulo
13. We conclude that 3 is not a primitive root in Z3.

(3) Assume that Alice and Bob perform Diffie-Hellman key exchange using
prime p = 61 and primitive element g = 10. Imagine that Alice’s private key is
a = 7 and Bob’s is b = 50. Compute the public message Alice sends Bob, the
public message Bob sends Alice, and the shared secret number s at the end of
the exchange.

By the definition of the Diffie-Hellman protocol, we have A = ¢° mod p,
B = ¢’ mod p, and s = ¢** = B® = A® mod p. The numbers here are getting
pretty big (e.g. 26°°), so we should use powMod rather than mod in order to
avoid the potential for problems.
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>> A = powMod(10,7,61)
A =

26
>> B = powMod(10,50,61)
B =

48

>> s = powMod(26,50,61)

48

>> s = powMod(48,7,61)

48
(4) Assume that Alice and Bob perform Diffie-Hellman key exchange using
prime p = 997 and primitive element ¢ = 11. Imagine Alice’s private key is
a = 812 and Bob’s is b = 903. Compute the public message Alice sends Bob,

the public message Bob sends Alice, and the shared secret number at the end
of the exchange.

Recall that A = g mod p, B = ¢® mod p, and the shared secret is s = g% =
B® = A’. The numbers here are quite large, so we’ll have to use powMod.

>> A = powMod(11,812,997)
A =

321
>> B = powMod(11,903,997)
B =

979

>> s = powMod(321,903,997)
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185

>> s = powMod(979,812,997)

185

(5) Find two widely accepted technologies, current or formerly in use, that use
Diffie-Hellman key exchange.

Transport Layer Security (TLS), one of the foundational cryptographic pro-
tocols that underlies the Internet, uses Diffie-Hellman to generate keys shared
between client and server.

Secure Shell (SSH), a program used to remotely log into computers, uses
Diffie-Hellman.

Diffie-Hellman is also used in Internet Protocol Security (IPSec), a collection
of technologies that underlie many internet layer communications.
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B.8 Studio 3.2 Solutions: RSA

(1) Show that every zero divisor has infinite order. (Hint: suppose it has order
k and try to find a contradiction.)

If a zero divisor « had finite order k, then by definition 2* = 1. This would
imply that (z¥~1) = 1, meaning that = = !, This is impossible, since =
is a zero divisor.

(2) Show that every unit in Z, has order less than or equal to ¢(n).

Suppose a unit = does not have order less than or equal to ¢(n). Then none

of the elements
ot 22 o)

are equivalent to 1 modulo n. Each z! is a unit, since  is a unit; we could
convince ourselves that (z¢)~! = (z7!)!. But none of the z* are the unit 1.
Therefore, since we have ¢(n) powers of z and only ¢(n)— 1 values these powers

could take on, we know that two of them are equivalent, that is z' = 27 for
some 1 < i < j < ¢(n). Then

i =ad (B.8.1)
-2l =0 (B.8.2)
r'(1—27"") =0 (B.8.3)

The exponent j — ¢ is less than ¢(n), so by assumption that = does not have
order less than or equal to ¢(n), the second factor in the product is nonzero;
the only way x/~¢ = 1 would be for j — i to be some multiple of ¢(n). But this
would imply that x is a zero divisor, a contradiction, since we assumed from the
outset that z is a unit.

(3) Show that ¢(p?) = p? — p if p is prime.

There are p? — ¢(n) zero divisors in Z,2. We'll count the zero divisors and
then do the conversion to the number of units. The only divisors of p? are p and
1. Therefore, the only zero divisors in Zy2 are all the multiples of p, namely

07 12 2p7 3p7 a(p_l)p

So there are exactly p zero divisors. This gives us p? — p units. We conclude
¢(p) = p* —p.

(4) Prove the following claim: if an element x has order ¢(n) in Z,, then x is
a primitive element in Z,,.

Recall that an element x is primitive in Z,, if every unit in Z,, can be written
as a power of z, that is, there exists ¢ so that ¥y = z* mod n for every unit y in

Ln,
(m)=1 = 1 mod n. This implies that
k

Since z?(") = 1 mod n, we have zx?
2~ = 2?(") =1 This implies that z is a unit in Z,. Similar reasoning shows z
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is a unit in Z,, because 1 = z¢(") = 2+2?(")=F  So every power of z is a unit.
It remains to show that by taking all powers of x, we can recover all the units
of Z,,. In other words, we need to show that the elements

zt, 22, L, 2™

must all be different. To see this, suppose that 2° = 2/ mod n for some pair
i< j<é(n). Then

rt=at (B.8.4)
=2l =0 (B.8.5)
(1 -2 =0 (B.8.6)

Since z° is a unit, it is not a zero divisor. Therefore, for this equation to hold,
it must be the case that 1 — 27~% = 0 mod n. But this would imply that = has
order less than or equal to j — ¢ which is less than ¢(n) by our choice of ¢ and j.
This contradicts our assumption that the order of x is ¢(n). We conclude that
all the powers 2!, 22, ..., z?(™ must all be distinct. Since there are exactly
¢(n) units in Z,,, every unit must be expressible as a power of z. Therefore x

is primitive in Z,.

(5) Imagine an RSA cryptosystem is created with primes p = 991 and ¢ = 113.
(a) Imagine Alice chooses e = 50. Is this value appropriate? Why or why
not?

We need e to be a unit in Zg(,). We can verify whether e = 50 is a unit in
Z¢(991.113) with Matlab.

EDU>> gcd(50,990%112)
ans =

10

(Recall that ¢(pg) = (p—1)(¢—1).) Since the greatest common divisor is greater
than 1, the element e = 50 is not a unit in the appropriate ring. Alice should
not use e = 50.

(b) Imagine Alice now chooses e = 53. Verify that this choice is acceptable.
What information does Alice publish?

Here, e = 53 is a unit in Z¢(991,133).

EDU>> gcd(53,990%112)
ans =

1

Alice publishes both e = 53 and n = pg = 111983.
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(c) Imagine Bob wants to send the message m = 100. Is this value OK?
Why or why not?

This is perfectly fine. Bob’s message should be an element of Z,. It does
not need to be a unit, so for instance m = 1982 would be a perfectly fine choice,
too.

(d) What ciphertext does Bob send across the channel given the numbers
we’ve decided on so far?

In general, Bob sends ¢ = m® mod n. Here, we have
EDU>> ¢ = powMod(100,53,111983)
c =
49329
(6) Imagine Bob has chosen p = 937, ¢ = 683, and e = 383179.
(a) Is Bob’s choice of e appropriate? Why or why not?

Bob’s choice of e must be a unit in Z(,,). Since p and g are both primes, we
have ¢(pq) = (p —1)(¢ — 1). We can test whether e is a unit in Zg(,):

>> gcd (383179, 936%682)

ans =

1

We conclude that e is a unit in Zgy,), and therefore Bob’s choice of e is appro-
priate for RSA.

(b) Alice sends Bob ¢ = 170133. What is the associated plaintext?

In general, we can assume that Alice has sent Bob ¢ = m® mod n. To recover
the plaintext m, Bob must first compute the multiplicative inverse of e in Zg,):

>> modInv (383179, 936%682)
ans =

447379

Bob then computes ¢ = m ' = m!T*(™) = m mod n, where the last
equivalence follows from Euler’s theorem. Numerically, this results in

>> powMod (170133, 447379, 937%*683)
ans =

101
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B.9 Studio 3.3 Solutions: Cryptographic Hashes

(1) Generating truly random bits is very difficult. In practice, we often settle
for pseudorandom bits, meaning that the bits “look” random but are generated
by a deterministic (i.e., non-random) procedure. Explain how a hash function
could be used to generate pseudorandom numbers?

Since a hash function takes an input and produces a “random” output, we
might think that this is a good place to start. Even if an attacker knew the
general type of inputs we were using, predicting the exact output should be
expected to be hard. More quantitatively, if we wanted to generate k& random
bits, we should choose a hash function H which produces an output of n > k
bits. We can then convert the any k bits we choose into a number between 0
and 2F — 1.

(2) Passwords are often hashed before they are stored on a company’s website.

(a) Imagine you provide your password when you try to login to a website.
The web server will compare the password you provide to the hashed password
it has associated with your account. Use the properties of hashes to explain why
this procedure will allow you to login if and only if you've provided the correct
password (with very high probability).

Collision resistance tells us that it is almost impossible that you could pick
a false password that has the same hash as your original password; the website
will only let you login when you provide the correct password. If you provide
the correct password, it will produce the correct hash, because there is no ran-
domness in a hash function, i.e., a given input always leads to the same output.

(b) Why wouldn’t the company just compare the password you provide to
a plaintext version of your password it stores on its servers?

If a hacker were ever to gain access to the server on which the passwords were
stored, the hacker would have direct access to all passwords. This is bad. But
since people often reuse the same username/password combinations on different
sites, a failure like this is particularly bad, because it makes other sites much
more vulnerable.

(c) Experienced hackers know that companies store their passwords in hashed
form. To speed up their attacks, hackers will compute the hashes of a bunch
of common passwords (e.g., “password”, “1234”, “asdf”). This collection of
pre-computed hashes is called a rainbow table. (Don’t believe the silly name?
Check out https://www.freerainbowtables.com). Suppose a hacker manages to
obtain a company’s list of hashed passwords. How can a rainbow table be used
to further compromise security?

Say the first entry in the rainbow table is the password password and its
associated hash h. The hacker can scan the list of all hashed passwords in
the company’s list of hashed passwords. If the hacker finds a match, collision
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resistance tells us that the match is most certainly generated because the user
also chose password password. If the two hashes match but the passwords are
not the same, then the user has found a collision in the hash.

Note that this is a particularly strong attack, because the hacker can look at
the entire database at once and find all users that have a particular password.

(d) To mitigate the effectiveness of rainbow attacks, many websites use
salts. A salt is a random number that is appended before your password before
hashing. For a concrete example, imagine that you register at a new website.
The server will generate a random number and assign this number as your
account’s salt. The server will then store H ([salt password]). Explain how the
use of salts makes rainbow tables far less effective, even if the hacker happens
to know the salt that was applied to each password.

Again, let’s assume the first entry in the rainbow table is the password
password and its associated hash h. Imagine that the i‘" user has salt s;.
To see whether the i*" user has password password, the hacker will have to
compute H([s; password]) for every user. Since different users have different
salts, even if two users have the same password, they will have different salted
hashes. This forces the hacker to crack each user’s password individually, rather
than comparing all at once a single hashed password in the rainbow table to all
hashed passwords in the company’s list.

(3) One of the problems with using digital photography for collecting criminal
evidence is the possibility of tampering and digital editing. Explain how a
cryptography hash could be used to show a photo has not been altered since it
was taken. (Hint: feel free to use the time stamp of when the photo was taken.)

The camera captures a time stamp when the image is taken (and perhaps
even information about who was using the camera if the device is sufficiently
sophisticated). The camera itself then computes the hash H(image stamp]).
We could easily verify after the fact that the image was taken at the given time
by recomputing the hash and making sure that the new hash matched the old
hash. Moreover, it would be nearly impossible for someone to forge a picture
that would have the same hash due to collision resistance.

(4) In a silent auction, bidders write down their bids for an item and submit
these bids to the auctioneer. At the end of the silent auction, the highest bid
wins. Hence, there is a strong incentive to be the highest bid, but as little as
possible over the runner-up.

One problem with silent auctions is that the auctioneer can collude with an
accomplice by telling her the highest bid. This allows the accomplice to win the
auction without overspending by any more than they must.

It would be great if each bidder had to commit publicly to their bid. The
problem is that if they reveal their bid directly, it defeats the point of a silent
auction. Devise a scheme using cryptographic hashes that allows a bidder to
show the public that they have locked in their bid. Your scheme should also



Appendix B. Studio solutions

prevent other bidders from figuring what exactly the bid was, even if they know,
for instance, that the only possible bids are increments of $10.

When the time comes to commit, each bidder chooses a random number, call
it s. They then compute H([s bid) and release this hash value to the public.
When the time comes to show their bid, the bidder recomputes the hash and
shows the public that the new hash and the old hash match. This implies that
they have probably not changed their bid; after all, if they had found two [sbid]
pairs that led to the same hash, they will have found a collision.

The random salt s makes it more difficult for other bidders to guess the bid
the corresponds to a particular hash. Since a hash is a one-way function, no one
could directly “undo” the hash to arrive at the original bid. That being said,
if all bidders knew that bids were in increments of 10 dollars, it would be too
hard to simply try every possible bid until you found a hash that matched. As
in the password problem earlier, the salt doesn’t completely fix this problem,
but it makes cracking someone’s bid much, much harder.
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B.10 Studio 3.4 Solutions: Digital Signatures

(1) Imagine Alice wants to send a signed version of the message Meet at midnight
to Bob using the RSA-based signature scheme.
(a) Use sha0 to compute the message digest h of Alice’s message.

>> h = sha0(’Meet at midnight’)
h =

2646

(b) If Alice chooses p, = 911, ¢, = 937 and e, = 11, what signature s associated
to the given message does she send Bob?

Alice sends s = h® mod n,. Recall that we mean e 'e, = 1 mod ¢(n,).
In Matlab,

>> ealnv = modInv(11l, 910%936)
ealnv =

309731
Therefore, Alice sends signature

>> s = powMod (2646, 309731, 911%937)

404684

(2) Imagine now that Alice wants to send the numeric message m = 123456789
to Bob using an RSA-based signature scheme. Imagine that Alice has chosen
pa = 911, g, = 937 and e, = 11, and that Bob has published n;, = 27491 and
eb::l&

(a) Use sha0 to compute the message digest h of Alice’s message.

>> sha0(123456789)
ans =

32666

(b) What is the ciphertext that Alice sends Bob?

Alice sends ¢ = m® mod ny. Here, we have
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>> ¢ = powMod (123456789, 13, 27491)

24308

(c) What is the signature that Alice sends Bob?

In general, Alice’s signature is s = h¢a' mod nq. Remember that here e, !

means the inverse of e, in Zy(,,), not in Z,,. We have

>> ealnv = modInv(11l, (911-1)*(937-1))
ealnv =

309731
Then the signature Alice sends Bob is

>> s = powMod (2646, 309731, 911%937)

404684

(3) Imagine Alice has published n, = 853607 and e, = 11, and Bob has chosen
py = 37, qp = 743, and e, = 13, both using the RSA scheme. Bob receives
c = 2409 and s = 790832 from someone claiming to be Alice. Should Bob
believe that this message actually came from Alice?

Bob begins by deciphering the ciphertext using m = c% " mod np. Here, the
quantity eb_1 is the inverse of e, in Zgy(p,), not in Z,,. In Matlab,

>> ebInv = modInv (13, 36%742)
ebInv =

18493
Then the message is given by

>> m = powMod (2409, 18493, 37%743)

6283

The hash of this message is
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>> sha0(6283)
ans =

12473

Bob needs to check this digest against the digest encoded Alice’s signature. He
can recover this hash digest via h = s® mod n,. In Matlab,

>> h = powMod (790832, 11, 853607)
h =
12473

Since the two values match, Bob can be very sure that Alice actually sent the
message he received. Notice that in this problem, Bob had no knowledge of
Alice’s private information.

(4) Imagine Alice has published n, = 853607 and e, = 11, and Bob has chosen
py = 37, qo = 743, and e, = 13, both using the RSA scheme. Bob receives
c =182 and s = 46937 from someone claiming to be Alice. Should Bob believe
that this message actually came from Alice?

Bob begins by deciphering the ciphertext using m = c% " mod np. Here, the
quantity eb_1 is the inverse of e, in Zgy,), not in Z,,. In Matlab,

>> ebInv = modInv (13, 36%742)
ebInv =

18493
Then the message is given by

>> m = powMod (182, 18493, 37%743)

3141
The hash of this message is
>> sha0(3141)
ans =

3378
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Bob needs to check this digest against the digest encoded Alice’s signature. He
can recover this hash digest via h = s® mod n,. In Matlab,

>> h = powMod (46937, 11, 853607)
h =

748480

Since the two values do not match, Bob can be very sure that Alice did not
actually send the message he received.

(5) Imagine Alice wants to send Bob a signed version of the message Meet at midnight
using the DLP-based signature scheme with primitive element g = 7 in Zgs7.
Assume that Alice and Bob have agreed to use the sha0 hash. Alice’s private key

is a = 117, and for this transmission, she has chosen k = 17. What information

does Alice send Bob?

In the DLP-based scheme, Alice sends r = ¢¥ mod p and s = (h—ar)k~! mod
(p —1). We can compute r in Matlab using the ideas we’ve assembled:

>> r = powMod(2, 17, 937)

829
To compute s, we first need to compute the message digest h:

>> h = shaO(’Meet at midnight’)
h =

2646
Here, the quantity k~! is computed in Zy—1, not in Z,. We have

>> kInv = modInv(17, 936)
kInv =

881
Combining the last two pieces, we can compute s:

>> s = mod((h - 117%r)*kInv,p-1)

837
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(6) Imagine now that Alice wants to send Bob a signed version of the message
m = 1234 using the ElGamal signature scheme. Assume that Alice and Bob
have agreed on g = 2, p = 1117, and sha0 as their hashing algorithm.

(a) Show that Alice and Bob’s choice of g is appropriate given their choice
of p.

To make Eve’s cryptanalysis as difficult as possible, we need for g to be a
primitive element in Z,. We can verify that the order of g is p — 1:

>> ord(2, 1117)
ans =

1116

(b) Imagine that Alice has published A = 501 as her public key. If Bob re-
ceives message m = 1234 and signature (r, s) = (539, 37) from a person claiming
to be Alice, can Bob conclude that the message actually came from Alice?

Bob needs to confirm that ¢ (™) is equal to 7° A" modulo p. The hash digest
is

>> h = sha0(1234)
h =
62497
Then g" is
>> powMod (2, 62497, 1117)
ans =

2
We can also compute the second quantity:

>> mod (powMod (539, 37, 1117)#*powMod (501, 539, 1117), 1117)
ans =

2
Since the two quantities are equal, Bob can be very sure that the person who
sent the message is actually Alice.

(c) Imagine that Alice has published A = 501 as her public key. If Bob
receives message m = 5678 and signature (r,s) = (539,542) from a person
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claiming to be Alice, can Bob conclude that the message actually came from
Alice?

Bob needs to confirm that ¢”(™ is equal to 7A” modulo p. The first
quantity is given by

>> powMod (g, sha0(5678), 1117)
ans =

531
The second quantity is given by
>> mod (powMod (539, 542, 1117)*powMod (501, 539, 1117), 1117)

ans =

832

Since the two quantities are different, Bob can be very certain that the person
who is sending the message is not actually Alice.

(d) Imagine that Alice has published A = 501 as her public key. Suppose
Eve has determined that Alice is failing to choose a new value of k each time
she sends a message to Bob. If Eve has collected two hash-signature pairs
(h1,s1) = (12473,69) and (he, s2) = (3378,446), what is Alice’s private key a?

We know s1k + ar = hy mod (p — 1) and s2k + ar = hg mod (p — 1). Sub-
tracting the second equation from the first gives

(s1 — s2)k = hy — hg mod (p— 1) (B.10.1)
(69 — 446)k = (12473 — 3378) mod 1116 (B.10.2)
739k = 9095 mod 1116 (B.10.3)

k = 739719095 mod 1116 (B.10.4)

= 595(9095) mod 1116 (B.10.5)

= 41. (B.10.6)

This implies that 7 = ¢* mod p = 2*! mod 1117. We can easily recover r in
Matlab:

>> powMod (2, 41, 1117)
ans =

539

We know now every quantity in the equation sk + ar = hy mod (p — 1) except
the private key a. We can rearrange the equation to solve for a:

a=r""(hy —s1k) mod (p — 1).
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Substituting in Matlab reveals the private key:

>> mod(modInv (539, 1116)*(12473 - 69%41), 1116)
ans =

256

We can actually confirm that this is Alice’s private key by checking it against
her public key A = 215. We see that indeed g = 22°° mod p = 501.

Notice that this procedure could’ve failed in several places. First, if (s1 — s2)
had failed to be invertible in Z,_;, we would not have been able to solve for k.
Second, if 7 had failed to be invertible in Z,_;, we would not have been able
to solve for a. In conclusion, not choosing a new k after every message will
not necessarily allow Eve to determine the private key. That being said, this
sloppiness could seriously weaken the overall strength of the system.
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B.11 Studio 3.5 Solutions: Zero-Knowledge Proofs

(1) A friend of yours is colorblind and so cannot tell his red socks from his
green socks. In fact, he believes that they are actually the same color. You keep
trying to tell him that the colors are different, that he looks like a fool with
them on, and that he needs to get rid of them. Your friend thinks that you’re
trying to play a joke on him with all of this “different colors” business.

Fortunately, you've devised a plan to break the stalemate. You give him
both a red and a green sock, and clearly tell him which is which. You tell him
to randomly choose whether or not to switch the socks behind his back. He
then reveals each hand to you, and you tell him which hand contains which
sock. You can repeat the process over and over until your friend is sure you're
telling the truth.

(a) Argue that this scheme is complete.

Recall that completeness means that if the prover is telling the truth, then
the prover can convince the verifier. If you can actually distinguish the red sock
from the green sock, you’ll have no problem correctly answering your friend each
round.

(b) Argue that this scheme is sound.

Recall that soundness means that if the prover is not telling the truth, then
the verifier will be able to find out with high probability. If you cannot actually
distinguish the red sock from the green sock, then the best you can do each round
is guess. Following this strategy, you have a probability 1/2 chance each round of
answering correctly. If your friend each round independently randomizes which
hand contains the red sock and which contains the green, then the probability
of your answering correctly over k rounds is (1/2)*. By varying the number of
rounds, your friend can achieve any level of certainty up to but not including
100%.

(c) Argue that this scheme is zero-knowledge.

Assuming that the socks are exactly identical aside from their color, you
cannot possibly convey any information about how you are distinguishing the
two to your colorblind friend.
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(2) Imagine you are a white hat hacker (the good kind) and have been com-
missioned to find flaws in a company’s new cryptographic scheme. You’ve found
one, but you don’t want to reveal the details until after the company has paid
you. You need a way to convince them that you’re telling the truth given these
restrictions. Describe a solution to this problem, and prove that it is complete,
sound, and zero-knowledge.

Suppose we’ve found a way to break their scheme. We can ask the company
to encrypt any message and send it over the channel. They keep the message
hidden at this point. We break their encryption and recover the message. We
reveal the message to them, and they confirm that our message matches theirs.

This scheme is complete, because if we have a way to break the encryption
they’re proposing, we can exactly follow the scheme above to convince them of
this fact.

The scheme is sound, because if we do not have a way to break their encryp-
tion, there is virtually no chance we will be able to guess the message they sent.
Even in the simplest case, there are two possible messages, and so we would
only have a 1/2 probability of guessing correctly. By increasing the number of
rounds as we’ve seen in other examples, the company can be as sure as they
would like to be that we are telling the truth.

The scheme is zero-knowledge, because by simply revealing the product of
our cryptanalytic process, namely the recovered message, we are not revealing
any information about the process itself.
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C.1 Teaching Note 1.1: Communication Systems

While we use various digital communication schemes every day, these systems
have become so transparent to the end user that few give a thought to how data
is so reliably passed back and forth. This section is meant to give an introduc-
tion to the formalization of communication systems developed in the mid-1900s
by Shannon and others. In particular, the three main phases of digital commu-
nication — compression, encryption and protection — each are briefly outlined
through a non-technical example. While the course notes that follow will deal
primarily with secrecy technologies, a broad and shallow understanding of the
larger system should help students put what they learn in context.

The lesson also introduces the three major players in both classical and
modern cryptosystems: the encrypter Alice, the decrypter Bob, and the eaves-
dropper Eve. These abstractions are incredibly convenient, both in the sense
that they clearly delineate roles, but also in that they easily frame exercises for
students. For instance, students can “be Alice” when encrypting and “be Eve”
when breaking a cipher. This personification should help students make the
critical distinction in each role between information they have and information
they don’t.

The lesson concludes with a discussion of numeric representations of text.
The studio problems focus on building a familiarity with the functions provided
with these notes for converting between numeric and character representations.
This is a key skill, as the format in which the plaintext or ciphertext is given
may not be the same as the format which the encrypter or decrypter expects.

Learning Objectives

After the lesson, students should be able to
e Sketch a rough diagram of the full communication system

e Articulate the roles of Alice, Bob, and Eve in the communication frame-
work

e Articulate the importance of compression, encryption, and protection in
modern communications

e Convert between numeric and character representations of text
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C.2 Teaching Note 1.2: Matlab

This lesson is aimed at providing a very basic introduction to foundational pro-
gramming concepts and Matlab syntax. The connections between Matlab and
traditional calculators are first developed. Next, matrices and vector implemen-
tations in Matlab are defined and explored, including basic arithmetic, indexing,
and slicing. (Note that matrix multiplication is not discussed in this section, ex-
cept that vxv, with v a vector will not produce the element-wise multiplication
that students might expect.) As the examples become more complex, scripts
and functions are introduced in order to preserve work completed. It has proved
helpful to have students follow along with simple examples, pausing every so
often to help students debug as syntax errors are common. Next, for loops are
covered in the context of automating repetitive tasks. Finally, if, elseif, and
else are introduced for flow control. Here, one approach is to present the entire
if block located on page 10 and allow students to figure out for themselves how
things work. A gate question here is “What happens when i = 257" The lesson
concludes with a brief presentation of the specialized functions provided along
with these course notes; this subsection could be left out and dealt with in a
just-in-time fashion as the functions become necessary in other lessons.

The studio problems associated with this lesson begin with simple array ma-
nipulations. Students are then asked to create simple functions to remind them-
selves of the syntax framework associated with function definitions in Matlab.
Ideally, they could use the example they completed in the notes as a reference.
Students must learn about basic Matlab functions, including round, ones, and
zeros. In addition, these problems are designed to encourage students to use the
help function early and often as they learn the language. In a more challenging
problem on loops and assignment, students are asked to write a function which
computes the factorial of an input n. The studio concludes with an exercise on
flow control via if statements.

There are many additional areas for exploration and assessment related to
these ideas. For instance, implementing a function which computes the k"
partial sum of a geometric series with ratio a is a challenging extension of the
factorial studio problem. There are numerous possibilities for assessment of
flow control, the most challenging of which would be conditionals which are not
mutually exclusive but which have some order of precedence.

Learning Objectives
After the lesson, students should be able to
e Explain the concept of variable assignment
e Structure the syntactical framework of a function without using references

e Write for loops without using references

e Use if, elseif, and else to control flow
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C.3 Teaching Note 2.1: Transposition Ciphers

This lesson covers the classical transposition cipher. This family of ciphers has
a rich historical context, including the Greeks’ use of scytales on the battlefield,
the deployment of the rail cipher in the American Civil War, and its combination
with fractionation in more modern ciphers. The instructor can use scytale
encryption as a hands-on ice-breaker activity.

In addition to the cryptographic content, this lesson is meant provide a gentle
introduction to Matlab implementation of cryptographic techniques; matrices
and vectors are introduced and connected to representation of plaintexts and
ciphertexts, and the specialized functions provided with these course notes are
employed. Basic Matlab operations like reshape and transpose are introduced.

The studio problems associated with this lesson (Section A.3 on page 76)
require that students implement the transposition cryptosystem in code. (It
is also expected that students will be able to perform encryption/decryption
of simple messages by hand.) The for loop implementation of the brute force
attack may be challenging for students. Section 1.2 provides a more complete
discussion of for loops and their syntax, including a nested if statement that
controls flow through the loop. The introduction of mod is also intentional, as
it will play an integral role in much of the remainder of the course.

While this lesson only covers the classical transposition cipher, rail ciphers
and more complicated variants are excellent opportunities for open-ended assess-
ment, and fractionation provides a natural connection between classical cryp-
tosystems and digital representation. Writing code for more complicated trans-
positional methods can quickly become intractable for beginner programmers.
One variant that would only involve good working knowledge of indexing in
Matlab would be to for Alice to reorder the columns of her plaintext matrix
before reading off the columns to form the ciphertext.

Learning Objectives

After the lesson, students should be able to

e Encrypt and decrypt small messages using the standard transposition ci-
pher without using reference materials

e Define matrices and vectors and explain the connection between matri-
ces and vectors and the representation of plaintext and ciphertext in the
transposition cipher

e Articulate the functionality of the reshape command

e Encrypt and decrypt large messages using the Matlab implementation of
the standard transposition cipher which they have written

e Explain how frequency analysis indicates a transposition encryption

e Cryptanalyze transposition ciphers using a brute force for loop attack
using code they have written
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C.4 Teaching Note 2.2: Caesar Ciphers

Caesar ciphers are some of the most common cryptosystems in popular culture.
Students may be familiar with old-fashioned “decoder rings” and these toys
could provide a natural and informative in-class activity. What may be more
surprising is the historical context of these codes, including primary source ma-
terial detailing Julius Caesar’s use of the cryptosystem. This provides another
touchstone for the idea that many cryptosystems are alphabet agnostic.

In addition to the cryptographic content, this lesson is meant provide an
introduction to the concepts of modular arithmetic and groups. In particular
the notion of additive inverses is integral for Caesar decryption. Moreover, the
notion of additive inverses naturally motivates the discussion of multiplicative
inverses necessary in affine cryptosystems. Introducing groups in one lesson
and rings in another breaks up some of the more technical content of the re-
spective lessons in order to allow students who may not be familiar with discrete
structures more time to adequately internalize the material.

The studio problems associated with this lesson (Section B.4 on page 103)
require that students implement the Caesar cryptosystem in code. (It is also
expected that students will be able to perform encryption/decryption of simple
messages by hand.) The for loop implementation of the brute force attack may
be challenging for students. Section 1.2 provides a more complete discussion of
for loops and their syntax. On the theoretical side, there several studio prob-
lems to help students consider the idea of groups under multiplication, which
motivates the discussion of multiplicative inverses in the affine cryptosystems
discussed in Section 2.3. In particular, students should at least begin to real-
ize that the additive identity 0 cannot have an inverse and that some nonzero
elements may fail to have multiplicative inverses.

Learning Objectives

After the lesson, students should be able to

e Encrypt and decrypt small messages using a Caesar cipher without using
reference materials

e Perform arithmetic modulo n without using reference materials, including
operations involving additive inverses

e Encrypt and decrypt large messages using the Matlab implementation of
a Caesar cipher which they have written

e Cryptanalyze Caesar ciphers using a brute force for loop attack using
code they have written

e Articulate the group axioms and relate the inverse and identity axioms to
Caesar cryptosystems
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C.5 Teaching Note 2.3: Affine Ciphers

Affine ciphers are a natural extension of Caesar ciphers in the quest for larger
and larger key spaces. As with Caesar ciphers, the encoding rule is relatively
simple. It is the difficulty of decoding that sets the two approaches apart. Affine
ciphers for this reason are an excellent introduction to the idea that in cryp-
tography it is often easy to perform an action, but it can often be difficult to
prove that this action always does what you intend. In the context of affine
ciphers, the decoder relies on the idea that we can “undo” modular multiplica-
tion. Students’ mathematical intuition gained from dealing with real numbers
indicates that such a reversal should always be possible. This leads to a natural
motivation of a suitable definition of an inverse, how we could know a priori
whether a particular element will have a multiplicative inverse modulo n, and,
ultimately, to investigation of units and zero divisors.

The basics of several proof strategies are deployed in the investigation of the
structure of units and zero divisors; these techniques might prove useful if other
topics, particularly those from modern cryptography, will be covered later in
the course. Moreover, the concept of the multiplicative group of a ring is one
that recurs throughout modern cryptography. The exact extent to which these
ideas are introduced mathematically can be easily tailored to a given class.

As with Caesar ciphers, affine ciphers have a relatively simple encoder/decoder
structure which should help students with limited programming experience prac-
tice how to structure functions. Common mistakes include writing the modular
inverse of £ in Matlab as e11~{-1}. The code bundled with these notes includes
a function modInv(x,n) which produces the inverse of z modulo n. Students
with a strong mathematical background may enjoy rederiving the formulation
used modInv from Bézout’s identity.

Learning Objectives

After the lesson, students should be able to

e Articulate the definitions of and distinction between the zero divisors and
units of a ring

e Encrypt and decrypt small messages using an affine cipher without using
reference materials

e Encrypt and decrypt large messages using a Matlab implementation of
the affine cryptosystem which they have written

e Cryptanalyze affine ciphers with a brute force attack using code they have
written
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C.6 Teaching Note 2.4: Polyalphabetic Ciphers

Polyalphabetic ciphers are a natural bridge between classical and modern cryp-
tosystems. The many variations on a common theme allow for students to
explore the implications of small changes in encryption to security and ease of
use. The lesson serves as an excellent capstone to classical cryptosystems.

Vigenere ciphers with relatively simple keys are little more than natural
extensions of Caesar ciphers. Students can often reinvent running key ciphers
themselves in a quest to expand the key space. A brief discussion of how the
properties of large blocks of English text can be exploited to break running
key ciphers motivates the development of one-time pads. This brings students
to the edge of the art, in the sense that one-time pads are “unbreakable” if
implemented properly. This notion of unbreakability can be contrasted with
the discrete logarithm problem and the integer factoring at the heart of many
modern crypto graphic techniques; these problems are thought to be difficult
but may in fact be tractable.

Vigenere ciphers likely present the most difficult cryptanalysis students will
have yet seen. If students have encountered the frequentist attack on Caesar
ciphers, Friedman’s method of coincidences will take them the rest of the way.
While strategy can be presented effectively without too much formal mathemat-
ics, more advanced students can formally derive the associated probabilities.
The increasing difficulty of cryptanalysis as one moves from Vigenere ciphers
to running key ciphers is a good introduction to the idea that some seemingly
simple cryptosystems may be very difficult to attack formulaically. A discussion
of one-time pads should send this message home.

The studio problems associated with this lesson require students to imple-
ment a general polyalphabetic encrypter and decrypter. There is a teachable
point here: a small increase in effort towards generality can lead to a large
increase in productivity.

Learning Objectives

After the lesson, students should be able to
e Articulate the process of Vigenére encryption and decryption

e Encrypt and decrypt Vigenere, running key, and one-time pad ciphers
using code they have written

e Articulate the process of Vigenere cryptanalysis, including Friedman anal-
ysis and frequency analysis

e Perform Vigenere cryptanalysis using a combination of code they have
written and guess-and-check

e Articulate the difference between the sizes of different polyalphabetic key
sizes
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C.7 Teaching Note 3.1: Diffie-Hellman

The Diffie-Hellman key exchange algorithm may be the first time that students
see the inner workings of a modern cryptographic protocol. Perhaps more im-
portantly, the topic often leads to a series of “firsts” for many students. For
most, the topic will be the first time they see interesting properties of groups,
like primitive roots, in action; even a student with a strong group-theoretic
background will likely not have seen such an application. The discrete loga-
rithm problem may be some students’ first encounter with the state of the art
of mathematics. In particular, applied students may not realize there are things
in mathematics that no one knows. Modular exponentiation of large numbers
requires an introduction to the digital representations of integers and the short-
comings of these representations. Finally, students who have been exposed to
classical cryptanalysis might be somewhat shocked to see just how easily even
cryptosystems resting on strong mathematical footing can be compromised, for
instance through a simple man-in-the-middle attack.

Students may also find the historical context of the problem interesting. In
the early 1970s, several different researchers independently converged on the idea
of using discrete logarithms to encrypt data without the used of a shared private
key. While Diffie and Hellman ultimately had their names ascribed to the key
exchange technique, British researchers Ellis, Cocks, and Williamson, working in
secret at the Government Communications Headquarters in the United Kingdom
actually developed the algorithm first. Their work remained classified.

The topic leads naturally into a series of mathematically related applica-
tions, including the El Gamal cryptosystem and the Digital Signature Algorithm
(DSA). (The latter also naturally induces the concept of hash functions.) Strong
students can be guided towards several challenges. For instance, an investigation
into and implementation of efficient modular exponentiation by squaring is per-
fectly suited for an advanced undergraduate with some prior coding experience.
For even more advanced students, an investigation into the trial multiplication
and baby-step-giant-step discrete logarithm algorithms might be interesting.

Learning Objectives

After the lesson, students should be able to

e Explain the sequences of transactions that take place in Diffie-Hellman
key exchange

e Define primitive roots and relate them to Diffie-Hellman key exchange
e Articulate the nature and difficulty of the discrete logarithm problem

e Compute the public keys and resulting shared secret in the Diffie-Hellman
scheme using code they have written
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C.8 Teaching Note 3.2: RSA

The Rivest-Shamir-Adelman (RSA) algorithm is one of the mainstays of modern
cryptography. As a pedagogical tool, it is useful for introducing a number of
important concepts, and these ideas can be put in context by comparing RSA
to other modern cryptographic schemes. Unlike Diffie-Hellman, RSA can be
used natively to exchange messages. Whereas classical cryptosystems encrypt
plaintext English, RSA encrypts numeric messages. This naturally leads to
a discussion of how modern computers store information. Depending on the
audience, the presentation could be limited to a scheme for mapping between
binary string and decimal representations. A more involved discussion could
involve the ASCII alphabet and/or the fundamentals of binary arithmetic. In
any case, students can gain valuable experience with some of the underpinnings
of modern computing.

Like Diffie-Hellman, RSA relies on the commonly accepted difficulty of a par-
ticular arithmetic operation, here the factorization of products of large primes.
This problem is embedded just below the surface in the RSA scheme, and to
fully investigate its relevance, Euler’s totient function and the concept of mulit-
plicative order must be introduced. Both have deep relationships to concepts
students may have already seen in other cryptosystems. In particular, students
can explore the connections between primitivity (as seen in Diffie-Hellman) and
the maximum order of an element as well as the connections between Euler’s
totient function and the collection of units in a given ring (as seen in Affine
Ciphers). Both should help solidify previous experience. The extent to which
various connections are fleshed out through proof can be widely varied to fit
the audience. For instance, the idea that an element is a unit if and only if
it has finite order can be either proved during lecture, presented as a result
without proof, or left as an exercise depending on students’ familiarity with the
fundamentals of proofs. (Some of these results are included in the studio prob-
lems associated with this lesson.) In particular, these notes present Lagrange’s
Theorem as a result, since the notion of cosets is a large piece of machinery to
introduce for an intermediate result.

Learning Objectives

After the lesson, students should be able to

e Define Euler’s totient function and articulate its importance in the RSA
algorithm

e Define the multiplicative order of an element of Z, and articulate its im-
portance in the RSA algorithm

e Articulate the nature and difficulty of the integer factorization problem

e Encrypt given plaintext and decrypt given ciphertext in the RSA cryp-
tosystem using code they have written
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C.9 Teaching Note 3.3: Cryptographic Hashes

Cryptographic hashes are an interesting topic to teach in that their design and
implementation are likely too complicated and esoteric for a general undergrad-
uate course, while their applications are numerous and powerful. Typically, stu-
dents can examine the details of a cryptographic technique and come away with
a deeper understanding of general techniques that will help them in the field.
The same is arguably true for cryptographic hashes, though the start-up cost
is much higher. Accordingly, this section examines the basic ideas behind cryp-
tographic hashes, including desirable properties and the relationships between
these properties and other cryptographic ideas, while completely disregarding
the actual methodology through which hashes are computed.

In some ways, cryptographic hashes provide a very natural bridge between
“theoretical” cryptography and “applied” cryptography, in the sense that cryp-
tographic systems that are theoretical secure can sometimes fail in a real world
context. A chain of examples that is laid out in the studio problems associ-
ated with this section is password storage. Most students will recognize that
storing passwords in plaintext is a bad idea, but most students will think that
encrypting passwords is a good idea. But academic assumptions often ignore
on-the-ground facts, here namely that an insider with access to the private key
could easily steal the plaintext passwords. True to form in this applied vein,
hashing the passwords does not solve the problem entirely; it simply makes
breaching security more difficult. The addition of salts increases the difficulty
further. This progression is a good one for students to see, especially in the
latter part of a course. One should also highlight the fact that the solutions our
instincts tell us should be good are often very bad, and that rubber-meets-the-
road cryptography should be left to professionals whenever possible.

The Matlab code bundled with these notes includes a hash function sha0.
This is a truncated version of the defunct shal hash function which returns an
integer rather than a bit or hex string. The maximum range of the integer is
chosen to avoid overflow of Matlab’s default double precision. Moreover, this
decreased output range should allow students to generate collisions reliably;
this could be leveraged in a potentially interesting problem in which students
generate a fixed number of collisions and determine to what extent the birthday
bound, which is detailed in this section, actually holds.

Learning Objectives

After the lesson, students should be able to
e Define both pre-image resistance and collision resistance

e Articulate the importance of both pre-image resistance and collision re-
sistance in a given application of cryptographic hashes

e Explain the birthday paradox and how it relates to collisions in crypto-
graphic hashes
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C.10 Teaching Note 3.4: Digital Signatures

Digital signatures dovetail very nicely with cryptographic hashes, in the sense
that they give a concrete and rigorously mathematical application of the general
concept of hashing. This section presents two: an RSA-based signatures scheme
and the DLP-based ElGamal signature scheme. In each, the key concept is that
an effective signature should include both information about the hash of the
message and the private key information. Understanding how and why these
pieces of information are included in a given digital signature is integral towards
understanding the concept as a whole.

While digital signatures are often very important, the choice as to whether
to encrypt the message itself before transmission over the channel is left to the
system’s designer. Accordingly, these notes provide an example of each. This
could naturally lead to a discussion as to when encryption of the message would
be a good thing (e.g., sensitive data, contracts), and when it might be com-
putationally wasteful (e.g., downloading a game in an app store, downloading
an update on a gaming console). These notions of some data being “safe” for
sharing could be compared and contrasted to recent calls for encryption of all
internet traffic, regardless of sensitivity.

The ephemeral value k in the ElGamal signature scheme leads to a great
example of how seemingly strong cryptographic protocols can fail if implemented
incorrectly. If 2010, the hacking group failOverflow gained access to Sony
Entertainment’s private DSA key in part by exploiting Sony’s decision not to
generate a fresh value of k for each signature. While DSA is more complicated
than ElGamal, the fundamentals are similar enough that a similar attack can be
brought to bear in the more restricted context; the notes for this section include
a worked example. One natural extension of this exercise would be to provide
students with message-signature pairs in a given ElGamal signature setup and
ask if the information provided was sufficient to determine whether the value of
k was being reused and, if so, what this value of k was.

Learning Objectives

After the lesson, students should be able to

e Explain the importance of digital signatures in a wider cryptographic con-
text

e FExplain how hash and private information is integrated into RSA-based
signatures

e Compute and verify RSA-based signatures using code they have written

e Explain how hash and private key information is integrated into DLP-
based signatures

e Compute and verify DLP-based signatures using code they have written
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C.11 Teaching Note 3.5: Zero-Knowledge Proofs

A discussion of zero-knowledge proofs at the end of a undergraduate cryptog-
raphy course has several advantages. First, it offers a “break” from the more
quantitatively demanding methods of modern cryptography. Second, it presents
clear connections between probability and cryptography. Until this point, many
students will have seen very algebraically beautiful and perfectly rigid cryp-
tographic techniques. Zero-knowledge proofs hint that there is a wider world
to explore, and indeed many of the more powerful tools from cryptography
and coding theory have a probabilistic flavor, e.g. Shannon’s original theo-
rems, low density parity check codes, etc. Third, students may have repeatedly
encountered the idea that it is difficult to digitally verify a person’s identity.
Zero-knowledge proofs offer one solution. This connection also allows for a dis-
cussion of trusted third parties and the importance of the chain of trust in
modern digital communications.

The lesson begins with a non-mathematical example of zero-knowledge proofs.
This example is even simpler than the traditional “magic cave” example, though
it does not contain the idea of “committing” as featured in many zero-knowledge
proof systems. The lesson goes on to discuss two mathematical examples,
Schnorr authentication and Fiat-Feige-Shamir authentication. The former of-
fers nice concoctions to the discrete logarithm problem. The latter allows for a
discussion of computational efficiency, in that the FFS scheme allows for many
verifications to be performed with the same exchange. In classes with sufficient
engineering and/or computer science background, the FFS scheme demonstrates
the need to understand the latency and computational complexity considera-
tions in a given application.

Many of the other mathematical examples of zero-knowledge proofs are quite
involved, and so the studio problems for this section focus on the concepts rather
than the mathematics. In particular, students are repeatedly asked to apply the
concepts of completeness, soundness, and zero-knowledge to proposed schemes.

Learning Objectives

After the lesson, students should be able to

e Articulate the roles of the prover and verifier in a zero-knowledge proof
system

e Explain the importance of completeness, soundness, and zero-knowledge
in general zero-knowledge proof systems

e Apply the concepts of completeness, soundness, and zero-knowledge to a
given application

e Design zero-knowledge proof solutions
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