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Abstract

The success of applying generalized complex orthogonal designs as space–time block codes recently
motivated the definition of quaternion orthogonal designs as potential building blocks for space–time-
polarization block codes. This paper offers techniques for constructing quaternion orthogonal designs via
combinations of specially chosen complex orthogonal designs. One technique is used to build quaternion
orthogonal designs on complex variables for any even number of columns. A second related technique is
applied to maximum rate complex orthogonal designs to generate an infinite family of quaternion orthogonal
designs on complex variables such that the resulting designs have no zero entries. This second technique is
also used to generate an infinite family of quaternion orthogonal designs defined over quaternion variables
that display a regular redundancy. The proposed constructions are theoretically important because they
provide the first known direct techniques for building infinite families of orthogonal designs over quaternion
variables for any number of columns.
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1. Introduction and definitions

The development of quaternion orthogonal designs for future use in signal processing as
space–time-polarization block codes has been recently introduced [1,2]. This idea was sparked
by previous work in space–time coding and in polarization diversity. Space–time block codes
can be viewed as a generalization of Alamouti’s scheme [3] for wireless transmissions utilizing
two transmit antennas. Tarokh et al. [4] generalized Alamouti’s scheme by defining generalized
(rectangular) complex orthogonal designs for use as complex orthogonal space–time block codes
for wireless transmissions utilizing multiple transmit antennas. The resulting space–time block
codes effectively combine space and time diversity and provide a major step in moving the
capacity of wireless communication systems towards the theoretical limits [4,5]. The success of
space–time block codes led to the idea of developing new codes that could effectively combine
space and time diversity with an additional form of diversity. Polarization diversity has been
shown to offer performance improvements [6–10], and the polarization states have been shown
to be presentable via quaternion representations [11]. This motivated us to develop a theory of
orthogonal designs over the quaternion domain for application as space–time-polarization block
codes. This paper focuses on the theoretical aspects of construction methods for these newly
proposed designs, while preliminary explorations of practical advantages are considered in our
other work [2].

Here, we provide a brief summary of the definitions necessary to build quaternion orthogonal
designs; these definitions, along with several examples, were recently introduced in our other
work [2].

Definition 1. A generalized complex orthogonal design (GCOD) A of type (s1, s2, . . . , su) on
commuting complex variables z1, . . . , zu, is an r × n matrix with terms from {0, ±z1, ±z∗

1, . . . ,

±zu, ±z∗
u}, including possible multiplications by the complex imaginary unit i, satisfying AH A =∑u

h=1sh|zh|2In, where In is the n × n identity matrix, H is the Hermitian transform, and so the
columns of A are formally orthogonal.

In this paper, we restrict our attention to generalized complex orthogonal designs (GCODs) where
sh = 1 for all h and each variable appears exactly once per column and at most once per row. In
the literature, these GCODs are known as pure.

Definition 2. A quaternion variable a = a1 + a2i + a3j + a4k, where ap, p = 1, . . . , 4 are real
variables and {±1, ±i, ±j, ±k} are elements of Q, the non-commutative quaternions, has a qua-
ternion conjugate defined by aQ = a1 − a2i − a3j − a4k. Given a matrix Y = (y�,m), where yu

are quaternion variables or numbers, its quaternion transform is YQ = (y
Q
m,�).

Many properties of the quaternions are well known [12] and will be used extensively in this
paper. For example, aQa = aaQ = |a|2 is real, and any quaternion variable a can be written as
a = z1 + z2j, where z1, z2 are appropriately chosen complex variables.
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We now review two definitions for quaternion orthogonal designs recently introduced by some
of the current authors [2]. These definitions parallel the definitions of real and complex orthogonal
designs and their generalizations [4,5,13,14].

Definition 3. A quaternion orthogonal design (QOD) of type (s1, s2, . . . , su) on complex vari-
ables z1, z2, . . . , zu is an r × n matrix A with terms from {0, ±z1, ±z∗

1, ±z2, ±z∗
2, . . . ,±zu, ±z∗

u}
including possible multiplications on the left and/or right by quaternion elements q ∈ Q =
{±1, ±i, ±j, ±k} such that AQA = (∑u

h=1 sh|zh|2
)
In, so the columns of A are formally ortho-

gonal.

Example 1. Consider the QOD A =
[

iz1 iz2
−jz∗

2 jz∗
1

]
, where z1, z2 are commuting complex variables.

Expanding the complex variables in A using zh = xh + yhi, where the xh, yh are real variables

gives A =
[ −y1 + ix1 −y2 + ix2

−jx2 − ky2 jx1 + ky1

]
. We can view the entries of A as quaternion variables such that

certain components of the variables are restricted to zero. For example, the (2,2) position represents
a quaternion variable a = a1 + a2i + a3j + a4k such that a1 = a2 = 0, a3 = x1, and a4 = y1 [2].

Definition 4. A quaternion orthogonal design (QOD) of type (s1, s2, . . . , su) on quaternion vari-
ables a1,a2, . . . , au is an r × n matrix A with terms from {0, ±a1, ±aQ

1 , ±a2, ±aQ
2 , . . . ,±au,

±aQ
u } including possible multiplications on the left and/or right by quaternion elements q ∈ Q

and to satisfy AQA = (∑u
h=1 sh|ah|2

)
In, so the columns of A are formally orthogonal.

It is clear that QODs on complex variables are a restricted form of QODs on quaternion vari-
ables. We can generalize these designs by allowing the design entries to be real linear combinations
of the permitted variables and their quaternion multipliers, in which case we say the design is
with linear processing. We say that an orthogonal design is zero-free if it contains no entries that
are zero.

2. Companion and zero-masking companion matrices

In this section, we introduce column companion matrices, row companion matrices, and zero-
masking companion matrices. We will use these constructs to build QODs in Sections 3 and
4.

Definition 5. Let A be an r × n generalized complex orthogonal design. We define a column
(row) companion matrix B by permuting the columns (rows) of A according to a permutation π

with order 2, which implies that π2 = 1 and π−1 = π .

Clearly, for a column (row) companion matrix to exist for an r × n GCOD, n (r) must be even.
Furthermore, as shown by Liang [5] and Lu et al. [17], a GCOD of size r × n exists for all n, and in
particular for all even n. Hence, for any even n, we may build a GCOD A of size r × n and an asso-
ciated column companion matrix B. For example, consider the permutation π with cycle notation
π = (12)(34) · · · (n − 1, n). This permutation has order 2 so that π−1 = π . Then, if c1, c2, . . . , cn

denote the n columns of A in order, then the columns of B are c2, c1, c4, c3, . . . , cn, cn−1 in order.

Example 2. The following generalized complex orthogonal design A achieves the maximum rate
of 3/4 [5], but has twice the achievable minimum decoding delay [15]. It is formed using Liang’s
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algorithm [5], then rearranging the order in which the rows appear and multiplying certain rows
by −1.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 0 z2 z3
0 z1 z4 z5

−z∗
2 −z∗

4 z∗
1 0

−z∗
3 −z∗

5 0 z∗
1

z∗
6 0 −z∗

5 z∗
4

0 z∗
6 z∗

3 −z∗
2

z5 −z3 z6 0
−z4 z2 0 z6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

One column companion matrix for A, formed by applying the permutation π = (13)(24) to the
columns of A, is as follows:

BCol =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2 z3 z1 0
z4 z5 0 z1
z∗

1 0 −z∗
2 −z∗

4
0 z∗

1 −z∗
3 −z∗

5

−z∗
5 z∗

4 z∗
6 0

z∗
3 −z∗

2 0 z∗
6

z6 0 z5 −z3
0 z6 −z4 z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

One row companion matrix for A, formed by applying the permutation π = (12)(34)(56)(78) to
the rows of A, is as follows:

BRow =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 z1 z4 z5
z1 0 z2 z3

−z∗
3 −z∗

5 0 z∗
1−z∗

2 −z∗
4 z∗

1 0

0 z∗
6 z∗

3 −z∗
2

z∗
6 0 −z∗

5 z∗
4−z4 z2 0 z6

z5 −z3 z6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Definition 6. Let A be an r × n generalized complex orthogonal design. We say that A is zero-
maskable by columns (rows) if the columns (rows) of A can be paired together in mutually
exclusive pairs such that the two columns (rows) in a given pair are never both zero in the same
row (column). If we form a column (row) companion matrix B whose columns (rows) are the
zero-masking partners of the respective columns (rows) of A, then B is called a zero-masking
column (row) companion for A.

Example 3. Referring to the designs in Example 2, the design BCol is a zero-masking column
companion for A, and the design BRow is a zero-masking row companion for A.

3. The column companion A + Bj construction

In this section, we use column companion matrices and zero-masking column companion
matrices to build QODs on complex variables.
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Theorem 1. The existence of an r × 2n generalized complex orthogonal design on complex
variables z1, z2, . . . , zu implies the existence of an r × 2n quaternion orthogonal design with
linear processing on complex variables z1, z2, . . . , zu.

Due to the construction algorithms provided by Liang [5] and Lu et al. [17], Theorem 1 implies
that there exist quaternion orthogonal designs with linear processing on complex variables for
any even number of columns.

Proof. We write A = [A1 A2] for the r × 2n GCOD on the u commuting complex variables,
z1, . . . , zu, where A1 and A2 are both of size r × n on the u commuting complex variables. Then,
by definition, AH A = (∑u

h=1 |zh|2
)
I2n. Thus

AH A =
[
AH

1

AH
2

] [
A1 A2

]
=
[
AH

1 A1 AH
1 A2

AH
2 A1 AH

2 A2

]

=
(

u∑
h=1

|zh|2
)

I2n.

Hence

AH
1 A2 = 0 = AH

2 A1

and

AH
1 A1 = AH

2 A2 =
(

u∑
h=1

|zh|2
)

In.

We note
(∑u

h=1 |zh|2
)
In is real.

Now, since permuting the columns of A = [A1 A2] preserves the orthogonality of the ma-
trix, we construct another GCOD B = [A2 A1]. Note that B is a column companion matrix
for A formed by applying the permutation (1, n + 1)(2, n + 2) · · · (n, 2n) to the columns of
A.

Then

BH B =
[
AH

2

AH
1

] [
A2 A1

]

=
[
AH

2 A2 AH
2 A1

AH
1 A2 AH

1 A1

]

=
(

u∑
h=1

|zh|2
)

I2n.
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Also

BH A =
[
AH

2

AH
1

] [
A1 A2

]
=
[
AH

2 A1 AH
2 A2

AH
1 A1 AH

1 A2

]

=

⎡⎢⎢⎣ 0

(
u∑

h=1
|zh|2

)
In(

u∑
h=1

|zh|2
)

In 0

⎤⎥⎥⎦
=
[
AH

1 A2 AH
1 A1

AH
2 A2 AH

2 A1

]
= AH B,

which shows that BH A and AH B are real and equal.
We now claim that D = 1√

2 (A + Bj) is the required QOD. Notice that

DQD = 1

2
(AQ − jBQ)(A + Bj)

= 1

2
(AQA − jBQBj − jBQA + AQBj).

However, as A and B are over the complex domain, we have AQ = AH and BQ = BH .
Thus AQA = AH A =∑u

h=1|zh|2In which is real. Similarly BQB is real and so −jBQBj =
−jBH Bj = −j

(∑u
h=1|zh|2

)
Inj =∑u

h=1|zh|2In. We also have −jBQA + AQBj = −jBH A +
AH Bj = 0 as both AH B and BH A are shown above to be real and equal.

So we have

DQD = 1

2

(
u∑

h=1

|zh|2In +
u∑

h=1

|zh|2In

)

=
u∑

h=1

|zh|2In

So D satisfies the defining orthogonality constraint required for QODs. Furthermore, the entries of
D are of the form 1√

2
(zh),

1√
2
(zh + jzm), or 1√

2
(jzm), where the zh and zm are complex variables,

up to conjugation and sign. So, each entry is a real linear combination of terms of the form qz,
where q ∈ Q and z is a complex variable. So, D satisfies all conditions of an QOD with linear
processing over complex variables z1, z2, . . . , zu.

Thus we have constructed our required QOD with linear processing over complex
variables. �

Corollary 1. If A and B are generalized complex orthogonal designs on complex variables
z1, z2, . . . , zu such that AH B and BH A are real and equal, then A + Bj is a quaternion orthog-
onal design on complex variables z1, z2, . . . , zu.
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Corollary 1 suggests a line of research in identifying pairs of GCODs A and B such that
AH B = BH A is real. This condition is familiar from the definition of complex amicable designs.
Amicability of orthogonal designs was first considered in the real case by current author Seberry
in the 1970s [18,19]. Many questions regarding complex amicability remain unsolved, and we
hope that the current context will motivate more work in this area.

Example 4. We now apply the construction technique described in Theorem 1 to the GCOD A

and its zero-masking column companion BCol from Example 2. To emphasize the structure and
allow for generalizations, we set

X =
[
z2 z3
z4 z5

]
and Y =

[−z∗
5 z∗

4
z∗

3 −z∗
2

]
,

so that, with I2 the 2 × 2 identity matrix, we can rewrite A and BCol as

A =

⎡⎢⎢⎣
z1I2 X

−XH z∗
1I2

z∗
6I2 Y

−YH z6I2

⎤⎥⎥⎦ and BCol =

⎡⎢⎢⎣
X z1I2

z∗
1I2 −XH

Y z∗
6I2

z6I2 −YH

⎤⎥⎥⎦ .

SinceAH A =∑6
h=1 |zh|2I4, we haveXH X + YH Y = XXH + YYH =∑6

h=1 |zh|2I2. Now per-
forming the construction technique, we get

D = 1√
2
(A + BColj)

= 1√
2

⎡⎢⎢⎣
z1I2 + Xj X + z1jI2

−XH + z∗
1jI2 z∗

1I2 − XH j
z∗

6I2 + Y j Y + z∗
6jI2

−YH + z6jI2 z6I2 − YH j

⎤⎥⎥⎦

= 1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 + z2j z3j z2 + z1j z3
z4j z1 + z5j z4 z5 + z1j

−z∗
2 + z∗

1j −z∗
4 z∗

1 − z∗
2j −z∗

4j
−z∗

3 −z∗
5 + z∗

1j −z∗
3j z∗

1 − z∗
5j

z∗
6 − z∗

5j z∗
4j −z∗

5 + z∗
6j z∗

4
z∗

3j z∗
6 − z∗

2j z∗
3 −z∗

2 + z∗
6j

z5 + z6j −z3 z6 + z5j −z3j
−z4 z2 + z6j −z4j z6 + z2j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This is a QOD with linear processing on the complex variables z1, z2, . . . , z6, as the entries are
real linear combinations of these complex variables and their quaternion multipliers. This example
shows that since there exists a zero-maskable by columns 8 × 4 generalized complex orthogonal
design, there also exists a zero-free 8 × 4 quaternion orthogonal design on complex variables.

We note that the construction in Theorem 1 can also be applied to the maximum rate and mini-

mum decoding delay design A′ =
⎡⎣ z1 0 z2 z3

0 z1 z∗
3 −z∗

2−z∗
2 −z3 z∗

1 0
−z∗

3 z2 0 z∗
1

⎤⎦ to produce a zero-free 4 × 4 quaternion

orthogonal design on complex variables. However, we utilized the 8 × 4 example A obtained via
the well-known Liang algorithm [5] to show that minimum decoding delay is not necessary in
this construction and for further use in Section 4.3.
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4. The row companion A + jB construction

In Section 4.1, we present a quaternion construction technique using row companion matrices
and zero-masking row companion matrices. In Section 4.2, we apply this construction technique
to produce zero-free QODs on complex variables, while in Section 4.3, we apply this construction
technique to produce QODs on quaternion variables.

4.1. The construction

Theorem 2. Let A be an r × n generalized complex orthogonal design, where r is even. Form a
row companion matrix B by applying a permutation π of order 2 to the rows of A. Then A + jB
is an r × n quaternion orthogonal design.

Before providing the proof, we note for clarity that the construction in Section 3 utilizes A + Bj,
while the construction in this section utilizes A + jB. Since the quaternion j does not commute
with the complex entries in B, it is important to make this distinction. Also, in this section and
thereafter, we dropped the scaling constant of 1√

2
, since it is not essential to the discussion.

Proof. Suppose that A is an r × n generalized complex orthogonal design with r even, and
suppose that B is a row companion matrix for A. We will see that the main task in this proof is
to show that ATB = BTA, where T denotes the matrix transpose. In other words, we must show
that ATB is a symmetric matrix: ATB = (ATB)T = BTA.

We begin by proving the theorem for a special case. Suppose that B has been formed by
applying the order 2 permutation (12)(34)· · ·(r − 1, r) to the rows of A.

Let c1, c2, . . . , cn denote the n columns of A, in order. When expanded to show components,
write c� = (c�,1, c�,2, . . . , c�,r ). Since π acts on all rows of A by reordering the rows, it is clear
that the effect of π on any certain column of A is a reordering of the elements in that column. We
use the notation π(c�) to indicate the effect that π has on a column c� of A. So, we can now write
the �th column of B as π(c�), where c� is the �th column of A.

Now, consider the (�, m) entry of the product ATB. It is computed by taking the dot product
of the �th column of A with the mth column of B. We can represent this as c� · π(cm). Similarly,
consider the (m, �) entry of the product ATB. It is computed by taking the dot product of the mth
column of A with the �th column of B. We can represent this as cm · π(c�).

In order to show that ATB is symmetric, we must show that c� · π(cm) = cm · π(c�). Notice
that

c� · π(cm) = π(cm) · c� (dot product of complex variables is commutative)

= (cm,2, cm,1, cm,4, cm,3, . . . , cm,r , cm,r−1) · (c�,1, c�,2, . . . , c�,r )

(using definition of π)

= cm,2c�,1 + cm,1c�,2 + cm,4c�,3 + cm,3c�,4 + · · · + cm,rc�,r−1 + cm,r−1c�,r

= cm,1c�,2 + cm,2c�,1 + cm,3c�,4 + cm,4c�,3 + · · · + cm,r−1c�,r

+cm,rc�,r−1 (reordering of terms)

= cm · π(c�).

So, the (�, m) entry of ATB is equal to the (m, �) entry of ATB. Hence, we have shown that ATB

is symmetric and so ATB = BTA. With this relationship, we now have:
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(A + jB)Q(A + jB) = (AQ + (jB)Q)(A + jB)

= (AQ − BQj)(A + jB)

= AQA − (BQj)(jB) + AQ(jB) − (BQj)A

= AQA + BQB + (jAT)(B) − (jBT)(A)

= AQA + BQB + j(ATB − BTA) (1)

= AH A + BH B + j(ATB − BTA)

(since A and B are complex)

=
u∑

h=1

zhz
∗
hI +

u∑
h=1

zhz
∗
hI

(since A and B are orthogonal designs and since ATB = BTA)

=
u∑

h=1

2|zh|2I.

To see (1), note for example that AQ(jB) = (AQj)B, and then represent the (�, m) entry of matrix
AQ as z∗, where z is a complex variable in entry (m, �) in A. Then, since z∗j = jz, we have the
(�, m) entry of AQj equal to jz, equivalently j times the (m, �) entry of A. Hence, AQj = jAT.

So, we have shown that when the row companion matrix B is formed from A using π =
(12)(34)· · ·(r − 1, r), ATB is symmetric and thus A + jB is a quaternion orthogonal design.

We now show that the result follows for any choice of order 2 permutation, π . To see this,
note that in any case, the mth column of B is π(cm), where π is some permutation with order 2.
Then, the mth column of B, π(cm) is expanded as (cm,π(1), cm,π(2), . . . , cm,π(r)), where cm,π(h)

represents the image of the hth component of cm under the permutation by π .
We have

c� · π(cm) = π(cm) · c� (dot product of complex variables is commutative)

= (cm,π(1), cm,π(2), . . . , cm,π(r)) · (c�,1, c�,2, . . . , c�,r )

= π(cm,π(1), cm,π(2), . . . , cm,π(r)) · π(c�,1, c�,2, . . . , c�,r ) (2)

= cm · π(c�) (since π2 = 1).

To see (2), notice that for any two vectors x, y of complex variables, the dot product x · y is the sum
of the products of the corresponding components of x and y. So, summing these products in any
order produces the same result. Applying the same permutation π to each vector simply permutes
the order in which the intermediary products are summed. So, x · y is equal to π(x) · π(y), for
any permutation π .

We have now shown given any generalized complex orthogonal design A with an even num-
ber of rows and a row companion matrix B, ATB is symmetric. So, in all cases, A + jB is an
orthogonal design over the quaternion domain. �

The proof of Theorem 2 gives the following useful corollary:

Corollary 2. If A and B are generalized complex orthogonal designs such that ATB is symmetric,
then A + jB is a quaternion orthogonal design.
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Corollary 2 suggests future work in determining the exact conditions on complex orthogonal
designs A and B such that ATB is symmetric. We note again the similarity of this condition with
the definition of amicability.

4.2. Zero-free quaternion orthogonal designs

In this section, we use Theorem 2 to build zero-free QODs with linear processing on complex
variables. Specifically, given a maximum rate GCOD A with an even number of columns 2n, we
show that it is possible to form a row companion matrix B so that A + jB is a zero-free QOD with
2n columns. Since the deletion of any column within a QOD is also a QOD, this construction
produces zero-free QODs for any number of columns.

Corollary 3. Let A be an r × n generalized complex orthogonal design of type (1, 1, . . . , 1),
where r is even. If A is zero maskable by rows, then let B be a zero-masking row companion
for A. Then A + jB is a zero-free quaternion orthogonal design of type (2, 2, . . . , 2) with linear
processing.

Example 5. Using A and the zero-masking row companion BRow from Example 2, we obtain the
following zero-free design:

A + jBRow =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 jz1 z2 + jz4 z3 + jz5
jz1 z1 z4 + jz2 z5 + jz3

−z∗
2 − jz∗

3 −z∗
4 − jz∗

5 z∗
1 jz∗

1−z∗
3 − jz∗

2 −z∗
5 − jz∗

4 jz∗
1 z∗

1

z∗
6 jz∗

6 −z∗
5 + jz∗

3 z∗
4 − jz∗

2
jz∗

6 z∗
6 z∗

3 − jz∗
5 −z∗

2 + jz∗
4

z5 − jz4 −z3 + jz2 z6 jz6
−z4 − jz5 z2 − jz3 jz6 z6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This resulting QOD A + jBRow is with linear processing, as the entries are permitted to be linear
combinations of terms of the form qz, where q ∈ Q and z is a complex variable.

We will now apply Corollary 3 to maximum rate GCODs. Recall that the rate of a GCOD is
defined to be the ratio of the number of complex variables to the number of rows. In 2003, Liang
proved that the maximum rate of a GCOD with 2n − 1 or 2n columns is n+1

2n
[5]. Recall that the

minimum decoding delay for a given number of columns is defined as the minimum number of
rows necessary to achieve a maximum rate design. Recently, some of the current authors proved
that a tight lower bound on the minimum decoding delay for a maximum rate GCOD with 2n − 1

or 2n columns is r̃n =
(

2n

n − 1

)
[15]. When the number of columns 2n − 1 or 2n is congruent to 0,

1, or 3 modulo 4, the maximum rate GCOD can achieve the lower bound of
(

2n

n − 1

)
[17]. When

the number of columns is congruent to 2 modulo 4, the GCOD can achieve 2
(

2n

n − 1

)
, twice the

lower bound [5,17].
We are now ready to provide our next result:

Theorem 3. Let A be a κ
(

2n

n − 1

)
× 2n maximum rate generalized complex orthogonal design,

where κ ∈ {1, 2} is chosen so that κ
(

2n

n − 1

)
is even. Then it is possible to form a zero-masking
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row companion matrix B, so that A + jB is a zero-free quaternion orthogonal design with linear
processing.

Proof. For each n, κ
(

2n

n − 1

)
can be shown through algebraic manipulations to be even for at least

one value of κ ∈ {1, 2}. Let A be a maximum rate GCOD with 2n columns and κ
(

2n

n − 1

)
rows,

where κ ∈ {1, 2} is chosen so that κ
(

2n

n − 1

)
is even. Such designs can be constructed for all n using

well-known algorithms [5,17]. In the cases where such designs exist for both values of κ , κ = 1
is preferred for applications as these designs achieve the minimum decoding delay.

Theorem 2 then shows that given any row companion matrix B for A, the matrix A + jB is a
QOD. Corollary 3 shows that given any zero-masking row companion matrix B for A, the matrix
A + jB is a zero-free QOD. So, it remains to show that we can always construct a zero-masking

companion for any maximum rate GCOD with 2n columns and κ
(

2n

n − 1

)
rows, where κ ∈ {1, 2} is

chosen so that κ
(

2n

n − 1

)
is even. In other words, we must show that the rows of A can be partitioned

into mutually exclusive pairs so that no two rows in any given pair are zero in the same column.
This can be directly confirmed for the small cases with 2 and 4 columns. Therefore, we examine
the case of greater than 4 columns.

Liang showed that for any variable zi in a GCOD A, it is possible to rearrange the matrix
through suitable row and column rearrangements and multiplications of rows or columns by −1
to obtain a submatrix:

B� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z� 0 · · · 0
0 z� · · · 0 M�

...
...

. . .
...

0 0 · · · z�

z∗
� 0 · · · 0
0 z∗

� · · · 0

−MH
�

...
...

. . .
...

0 0 · · · z∗
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where B� is 2n × 2n when A has 2n columns [5]. Liang showed that for maximum rate GCODs
with 2n columns, M� is n × n, has no zero entries, and for n > 2, the variables in M� are distinct
(without considering conjugation or sign as distinctions) [5].

We say that a maximum rate GCOD A with 2n columns is in “B� form” if the submatrix B�

(with its n × n submatrix M�) can be created in A through only rearranging the order in which
the rows appear (“row swaps”), possible multiplications by −1, and possible conjugations of all
instances of z�. By prior results, we may assume that any rearrangement of the columns of A is
in B� form for some � [15]. We let X� denote the first n rows of B� and let Y� denote the last n

rows of B�.
By the structure of the submatrix B�, clearly any row within X� is zero masked by any row

within Y�. In any manner, form mutually exclusive pairs between rows in X� and rows in Y�. As
the number of rows in B� is even, namely 2n, and the number of rows in X� is equal to the number
of rows in Y�, any such pairing will always work.

Now, keeping these pairings on record, swap any column from the first n columns of A with
any of the last n columns of A. Such a column swap affects all rows in A by the same permutation
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of coordinates. We have previously shown that such a swap moves A into Bm form, and we may
assume (through appropriate such column swaps) that m /= � [15]. For convenience of discussion,
perform any necessary row swaps and multiplications by −1 until Bm appears at the top of A.
Now, consider the rows in Bm that did not appear (up to permutation) in B�. These rows are
currently unpaired, as they were not considered in the first iteration of row pairing. We must
show that the number of unpaired rows in Xm is exactly equal to the number of unpaired rows
in Ym, since this would allow us to form zero-masked pairs between rows in Xm and rows in
Ym.

We must consider the situation where a row (up to permutation) is contained in both B� and
Bm. If certain permutations of a given row r appear in both B� and Bm, � /= m, we say that B� and
Bm “share” the row r. We now show that if B� and Bm share a row r, then they must share exactly
two rows: Suppose r is shared by B� and Bm. For convenience, we follow Liang’s convention to
say that an entry of ±z� or ±z∗

� has color � [5]. Then, since each row in B� contains an element of
color � and since each row in Bm contains an element of color m, this row r contains one variable
of color � and one of color m. (Recall that no variable of any color appears more than once in any
row, by the definition of a GCOD.)

Now, consider the permutation of r that appears in B�. Due to the structure of B�, the element
of color � must appear along the main diagonal of B� and the variable of color m must appear
within M� or within −MH

� . Suppose without loss of generality that it appears within M�. Then,
this row r must appear within X�, the top half of B�. Then, since B� contains both submatrices M�

and −MH
� , there must be a second row r′ in B� that contains another variable of color m in −MH

� .
Clearly, this second element of color m will have the opposite sign and conjugation of the originally
considered element of color m, and this second row r′ must be within Y�. Since every row in B�

contains an element of color �, this row r′ must also contain an element of color �. We now claim
that, under the same permutation that puts r in Bm, r′ is also put in Bm: This is true since it has
been shown that every instance of zm (up to conjugation and sign) must appear in Bm [15]. For
the same reasoning that placed (say) r in X� and r′ in Y�, we know that within Bm the permutation
of one of these rows appears in Xm and the permutation of the other appears in Ym. Specifically,
we know that (up to signs) one of these rows contains zm (and thus appears in Xm) and the other
contains z∗

m (and thus appears in Ym).
So, we have shown that if B� and Bm share one row, then they share (at least) two rows. We

claim that B� and Bm cannot share more than two rows: For more than four columns, if B� and
Bm shared more than two rows, then this would require, for example, more than one variable of
color m inside M�. This would contradict Liang’s result that the variables in M� have distinct
colors for any maximum rate design with more than four columns [5].

So, we can conclude that if B� and Bm, � /= m, share one row, then they share exactly two
rows. Furthermore, we showed that one of the shared rows appears in X� (or Xm) and the other
appears in Y� (or Ym).

Now, suppose r is a row in B�, and without loss of generality assume it is in X�. While
pairing together the rows in B�, r is paired together with some row in Y�. Then, suppose a
permutation of r appears again in Bm. Our arguments above show that there is also some second
row r′ that is shared by B� and Bm. Furthermore, as shown above, since r appears in X�, r′
must appear in Y�. So, during the handling of B�, r in X� was paired with some row in Y�

and r′ in Y� was paired with some row in X�. (It is even possible that r and r′ were paired
together during the handling of B�.) So, during the handling of Bm, the permutations of r and
r′ that appear in Bm do not need to be paired with any other rows; these rows already have
been assigned partners. As explained above, we know that the appropriate permutation of one
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of r and r′ must appear in Xm, while the appropriate permutation of the other must appear
in Ym. So, the number of unpaired rows in Xm and the number of unpaired rows in Ym both
decrease by 1. Thus, the number of unpaired rows in Xm is equal to the number of unpaired
rows in Ym. Therefore, since any row in Xm can be paired with any row in Ym, it is still possi-
ble to produce zero-masking pairs between the unpaired rows in Xm and the unpaired rows in
Ym.

We now repeat this process by performing another column swap to move A into a new Bp form,
where p /= �, p /= m. Again, any row in Xp that has already been paired during the handling of
a previous Bs form will imply there is another row in Yp that has also already been paired. Again
it is implied that there will always be an equal number of unpaired rows in Xp as unpaired rows
in Yp.

We continue to perform column swaps as necessary until we have handled all B� forms, for
� = 1, 2, . . . , u, where u is the number of variables. (It may be possible to terminate this algorithm
without examining every B� form, due to the overlap between B�’s, but here we give the general
algorithm.) Since every row is contained in some B� form (in fact, each row appears in n + 1 B�

forms), we are guaranteed that each row will be paired.
Since we have shown it is possible to partition the rows of A into mutually exclusive zero-

masked pairs, it follows directly that we can produce a zero-masking row companion matrix for A.

Thus, we have shown that given any maximum rate GCOD A with 2n columns and κ
(

2n

n − 1

)
rows,

where κ ∈ {1, 2} is chosen so that κ
(

2n

n − 1

)
is even, we can find a zero-masking row companion

matrix B such that A + jB is a zero-free QOD with 2n columns. Since deleting any column of
A + jB produces a QOD with 2n − 1 columns, we can use this construction to produce a zero-free
QOD with any number of columns. �

Theorem 3 is important because it allows us to use a maximum rate GCOD with 2n columns
to generate a zero-free QOD with 2n columns, or with 2n − 1 columns after a column deletion.
Therefore, we have a general algorithm for producing zero-free QODs for any number of columns.

We focused here on obtaining zero-free designs over the quaternion domain because zero-
free designs over the complex domain have been shown to be important in the application of
space-time block coding [16]. It remains to show if the zero-free nature of the proposed QODs
will be exploitable in future applications as space-time-polarization block codes. We conjecture
that we will need a stronger condition such that all entries are simultaneously non-zero in both
polarization planes. This is stronger than the present condition that no entry is identically equal
to zero, which allows entries to be zero in one polarization plane.

4.3. Redundant Quaternion Orthogonal Designs

In this section, we provide a construction for QODs on quaternion variables, as opposed to
QODs on complex variables. Previously, it has been more difficult to obtain QODs on quaternion
variables, due to the added dimensions in the entries and the noncommutivity of the quaternions [2].
The following theorem provides the first known direct construction to yield QODs on quaternion
variables for any number of columns.

Theorem 4. Let A be a maximum rate complex orthogonal design with 2n columns and 2
(

2n

n − 1

)
rows. Then it is possible to form a row companion matrix B, so that A + jB is a quaternion
orthogonal design on quaternion variables.
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Proof. It has been shown previously that a maximum rate GCOD with 2n columns and 2
(

2n

n − 1

)
rows has each possible pattern of n − 1 zeros appearing in exactly two rows of A [15]. Therefore,
we can form mutually exclusive pairs by matching together rows whose zero patterns are identical.
The matrix formed via the combination A + jB will have a zero entry in each place that A had a
zero entry. The importance is that given the (�, m) entry of A as the complex variable z = a + bi,
and given the (�, m) entry of B as the complex variable z′ = c + di, where a, b, c, d are real
variables, we have the (�, m) entry of A + jB as a + bi + cj − dk, which is a full quaternion
variable. Hence, A + jB is a quaternion orthogonal design on quaternion variables, as opposed
to a quaternion orthogonal design on complex variables. Since deleting any column of A + jB
produces a QOD with 2n − 1 columns, we can use this construction to produce a QOD with any
number of columns. �

We note that the construction in Theorem 4 can be readily implemented, as Liang’s algorithm

provides the necessary maximum rate GCODs of size 2
(

2n

n − 1

)
× 2n for all n [5].

Example 6. Let A be as in Example 2. Then, form a row companion matrix B ′ by matching
together rows with the same zero patterns:

B ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z∗
6 0 −z∗

5 z∗
4

0 z∗
6 z∗

3 −z∗
2

z5 −z3 z6 0
−z4 z2 0 z6

z1 0 z2 z3
0 z1 z4 z5

−z∗
2 −z∗

4 z∗
1 0

−z∗
3 −z∗

5 0 z∗
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, we have

A + jB ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 + jz∗
6 0 z2 − jz∗

5 z3 + jz∗
4

0 z1 + jz∗
6 z4 + jz∗

3 z5 − jz∗
2−z∗

2 + jz5 −z∗
4 − jz3 z∗

1 + jz6 0
−z∗

3 − jz4 −z∗
5 + jz2 0 z∗

1 + jz6

z∗
6 + jz1 0 −z∗

5 + jz2 z∗
4 + jz3

0 z∗
6 + jz1 z∗

3 + jz4 −z∗
2 + jz5

z5 − jz∗
2 −z3 − jz∗

4 z6 + jz∗
1 0

−z4 − jz∗
3 z2 − jz∗

5 0 z6 + jz∗
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The importance of this construction is that each non-zero entry of the QOD is a full quaternion
variable of the form a = a1 + a2i + a3j + a4k, where the ah are nonzero real variables. It has pre-
viously been difficult to generate such QODs. We call the QODs formed via this construction tech-
nique redundant QODs due to the regular redundancy present among their entries. For example, the
(1, 1), (2, 2), (3, 3), (4, 4), (5, 1), (6, 2), (7, 3), and (8, 4) entries of A + jB ′ form a “redundant
family” of quaternion variables. Also, the (1, 3), (2, 4), (3, 1), (4, 2), (5, 3), (6, 4), (7, 1), (8, 2)

entries form a redundant family, and the (1, 4), (2, 3), (3, 2), (4, 1), (5, 4), (6, 3), (7, 2), (8, 1)

entries form a redundant family. This is equivalent to saying that the design is defined over three
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independent quaternion variables, with each independent quaternion variable, up to conjugation
and left and/or right multiplications by entries from Q, appearing exactly twice per column.

In general, when the construction technique described in the proof of Theorem 4 is applied to
appropriate row companion complex orthogonal designs on u complex variables, there will be u

2
redundant families of quaternion variables, or equivalently, u

2 independent quaternion variables.
The regular redundancy is a consequence of the structure imposed by the B� submatrices of A and
B. Practically, this regular redundancy may be exploitable in future applications of these designs
as space–time-polarization codes. The redundant families, or subfamilies thereof, may be used
to introduce redundancy for use in error control. Future implementations may determine if the
proposed zero-free QODs or the proposed redundant QODs are preferred over general QODs.

5. Conclusions

In this article, we focused on using complex orthogonal designs to build quaternion orthogonal
designs. Through this work, we have added to the nascent library of QODs and provided insight
into the structure of these mathematical designs.

We presented the column companion A + Bj construction and showed that this construction
technique is valid whenever A and B are chosen so that AH B and BH A are real and equal.
We provided a simple method for constructing column companion matrices A and B such that
AH B = BH A is real. This construction technique generates an r × 2n QOD on complex variables
from any r × 2n generalized complex orthogonal design, which can themselves be generated for
any choice of number of columns using well-known algorithms [5,17].

We presented the row companion A + jB construction and showed that this construction tech-
nique is valid whenever A and B are chosen so that ATB is symmetric. We used row companion
matrices as a way to build B from A in order to guarantee that ATB is symmetric.

Using the latter construction technique, we showed that given a maximum rate generalized
complex orthogonal design A with 2n columns that achieves either the minimum decoding delay
or twice the minimum decoding delay (depending on n), it is possible to find a zero-masking row
companion matrix B such that A + jB is a zero-free QOD on complex variables. Since deleting
a column from any orthogonal design produces an orthogonal design, it is possible to use the
proposed construction to build zero-free QODs on complex variables for any number of columns.

We also used this construction to produce QODs on quaternion variables. In particular, we
showed that given a maximum rate generalized complex orthogonal design A with 2n columns
that achieves twice the minimum decoding delay, it is possible to find a row companion matrix B

such that A + jB has each entry as either 0 or a full quaternion variable. We called the resulting
QODs redundant due to a regular redundancy appearing in the nonzero entries.

All constructions in this article require only readily available generalized complex orthogonal
designs. Due to existing algorithms for generating maximum rate, minimum decoding delay
designs [17] and maximum rate, twice minimum delay designs [5,17], the proposed infinite
families of QODs are easily obtainable.

We note that all of the presented constructions can be modified to apply to real companion matri-
ces in order to build complex orthogonal designs using combinations of the form A + iB. However,
other existing algorithms for maximum rate, minimum delay complex orthogonal designs are
preferable in applications due to the higher attainable rates [5,17]. It remains to determine the
maximum attainable rates using the quaternion domain.



S.S. Adams et al. / Linear Algebra and its Applications 428 (2008) 1056–1071 1071

We hope that Corollaries 1 and 2 stimulate further work on complex amicable and amicable-
like designs. Our future work will also include a study of the optimal rates and delay of QODs and
an exploration of the practical implementation of these designs as space–time-polarization block
codes. We will investigate if the different attributes of our designs (e.g., zero-free, redundant) can
be exploited to improve the performance of the proposed codes.
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