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Matthew Crawford, and Caitlin Greeley

Abstract—Complex orthogonal designs (CODs) of rate 1/2 have
been considered recently for use in analog transmissions and as an
alternative to maximum rate CODs due to the savings in decoding
delay as the number of antennas increases. While algorithms have
been developed to show that an upper bound on the minimum de-
coding delay for rate 1/2 CODs with � � � or � �
columns is � � � � � or � � � � , depending on the parity
of modulo 8, it remains open to determine the exact minimum
delay. This paper shows that this bound � � is also a lower bound
on minimum decoding delay for a major class of rate 1/2 CODs,
named balanced complex orthogonal designs (BCODs), and that
this is the exact minimum decoding delay for most BCODs. These
rate 1/2 codes are conjugation-separated and thus permit a lin-
earized description of the transceiver signal. BCODs also display
other combinatorial properties that are expected to be useful in im-
plementation, such as having no linear processing. An elegant con-
struction is provided for a class of rate 1/2 CODs that have no zero
entries, effectively no irrational coefficients, no linear processing,
and have each variable appearing exactly twice per column. The
resulting codes meet the aforementioned bound on decoding delay
in most cases. This class of CODs will be useful in practice due to
their low peak-to-average power ratio (PAPR) and other desirable
properties.

Index Terms—Complex orthogonal design, minimum decoding
delay, multiple-input-multiple-output, PAPR, space-time block
code.
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I. MOTIVATION

A. Background

C OMPLEX orthogonal designs and their various gen-
eralizations have been defined in a variety of ways

[1]–[7]. In this paper, we use a classical definition and
say that an complex orthogonal design (COD) of
type is an matrix with complex
entries from such that

, where is the Hermitian transpose
and is the identity matrix. If entries are permitted to
be complex linear combinations of the variables and/or their
conjugates, then we say that the COD is with linear processing
(LP) [8]. Unless otherwise specified, the CODs in this paper
are of type with no LP. This is the major type of
combinatorial designs considered in many papers, including
Liang’s seminal publication concerning the maximum rate of
such designs [9]. We note that recently Das and Rajan have
used the term “scaled COD” to refer to a type
COD where [10]. We will say that an real
orthogonal design (ROD) is an matrix with real entries
from such that , where

is the matrix transpose and is the identity matrix.
There are several characteristics of a COD that should be con-

sidered when choosing a COD for practical application. The de-
sign considerations include:

C1: Rate;
C2: Decoding delay;
C3: Transceiver signal linearization;
C4: Peak-to-average power ratio (PAPR);
C5: Power balance;
C6: Irrational coefficients;
C7: Linear processing.

Below, we briefly explain the importance of each of these
design considerations and give some pointers to prior work in
the respective areas. Yuen et al. have also recently discussed
optimal characteristics of CODs, including with respect to some
of the above considerations [11].

C1 and C2: Liang showed that the maximum rate (e.g., max-
imum ratio of number of variables to number of rows) for a COD
with or columns is [9]. Adams et al. subse-
quently showed that for a maximum rate COD with or

columns, a lower bound on minimum decoding delay (e.g.,
number of rows) is [12]; furthermore, this bound on de-
coding delay is achievable when the number of antennas is con-
gruent to 0, 1, or 3 modulo 4 [12]. Adams et al. went on to prove
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that when the number of antennas is congruent to 2 modulo 4,
the best achievable decoding delay is [13]. This delay
grows quickly as the number of antennas increases, while the
rate at this limit approaches 1/2. Thus, interest in rate 1/2 CODs
has grown, and an important question is to determine the min-
imal decoding delay of rate 1/2 CODs. Rate 1/2 CODs have also
received attention due to their proposed use in analog transmis-
sions [14].

C3: When implementing a COD using iterative decoding, it
is preferred to use a COD that allows for a linearized description
of the transceiver signal [15]–[18]. Su et al. recently determined
the conditions under which a COD can achieve this transceiver
signal linearization [17]; they showed that this linearization is
achieved if the COD is such that the nonzero entries in any given
row are either all conjugated (“a conjugated row”) or all noncon-
jugated (“a nonconjugated row”) [17]. We will call this property
conjugation-separation.

C4: A low peak-to-average power ratio (PAPR) mitigates sev-
eral potential implementation difficulties and can be achieved
by reducing the number of zeros in the COD. Fewer zero en-
tries reduces the need to switch on and off antennas which is
known to complicate implementation (see [11] and the refer-
ences therein). Zero reduction or elimination has been explored
by many authors (e.g., [11], [19]–[24]). Multiplying a COD by
a unitary matrix is an easy method for producing a COD with
no zero entries. However, this can result in increased signaling
complexity, for example by introducing complex linear com-
binations of variables in the entries of the design (linear pro-
cessing). As Das and Rajan explain [20], finding suitable unitary
matrices that do not result in increased signaling complexity is
difficult, though successful pre- and postmultiplications can be
seen in their recent works [20], [21]. To avoid a potential in-
crease in signaling complexity or to avoid the nontrivial task
of finding suitable unitary matrices, it is preferable to devise a
simple construction that immediately provides a COD with no
zero entries. Direct construction of such zero-free CODs is also
an interesting problem from a mathematical perspective.

C5: A COD is said to be power-balanced if each variable
appears the same number of times in each column, that is if the
COD has type . Yuen et al. show that in this case the
transmitted symbols will have equal transmission power, thus
eliminating the need for power normalizations [11].

C6: Another consideration is whether a COD includes any ir-
rational coefficients on any of the entries. First, we note that a
COD of type satisfies ,
and such a COD could be scaled by an overall factor of in
order to satisfy the alternative common definition of a COD that
is restricted to type and therefore satisfies

. In this latter formulation, since the overall ma-
trix is scaled by the same possibly irrational coefficient, we
can effectively ignore this coefficient and say that the COD
has effectively no irrational coefficients. Having (effectively)
no irrational coefficients is desirable in practice, since their ab-
sence eliminates the inconvenience and inaccuracy of floating
point multiplication and simplifies the hardware implementa-
tion [11], [25].

C7: Finally, we note that a COD with no linear processing
(LP) is desired, because the presence of complex linear combi-

nations of variables (including the use of irrational coefficients)
increases signaling and decoding complexity (see, for example,
[20]).

While we cannot simultaneously optimize every design con-
sideration except in the case of the 2 2 Alamouti code [26],
we strive to achieve a good balance of rate and delay (recalling
that delay considerations are a motivation for studying rate 1/2
as opposed to maximum rate CODs) while optimizing as many
of the other considerations as possible. In many cases, specific
system requirements will guide which considerations are more
or less important. Additional considerations may also be im-
portant for certain applications. Several authors have taken di-
verse approaches towards building optimal CODs, and we dis-
cuss some of these significant efforts below.

B. Summary of Prior Results

Tarokh et al. used a rate 1 ROD to obtain
a rate 1/2 COD with decoding delay ,
where is related to the Hurwitz-Radon number of order
as defined below in Section II [8]. These rate 1/2 CODs perform
well with respect to characteristics C3–C7 above, and they are
obtained via a simple algorithm. However, we will see that their
delay can be reduced by 50%.

Subsequently, Liang remarked (without proof) that any rate
1 ROD “is itself” a rate 1/2
COD of the same delay by pairing real variables appropriately
[9]. Although the details of such a correspondence have not been
published, rate 1/2 CODs generated using such a rule achieve a
delay of , which is presumed to be the minimum delay as
discussed in more detail in later sections of this paper. Hence,
these rate 1/2 CODs are presumed optimal with respect to con-
sideration C2; they also perform well with respect to consid-
erations C4 and C5. However, they do not achieve transceiver
signal linearization (C3), and they require LP (C7).

Recently, Das and Rajan [21] have proposed a class of rate
1/2 CODs that achieve the same presumed optimal delay as
achieved by Liang, and they showed that for the case of nine
columns, their COD is indeed of minimum delay among 1/2 rate
CODs that allow LP. These CODs themselves do not achieve
C3–C7, and they are obtained through an iterative algorithm.
However, the authors observe that the presence of columns with
complementary zero patterns in the resulting CODs allows for
the design of a simple unitary matrix whose postmultiplica-
tion with their original CODs produces type zero-free
CODs with the same delay as the originals. Hence, these new de-
signs perform well with respect to design considerations C4–C7,
though they do not admit transceiver linearization (C3).

Through these works, has been established as an upper
bound on the minimum decoding delay for rate 1/2 CODs. It has
only been proved to be the exact minimum in the case of nine
columns [21].

C. Overview of Paper

In this paper, we introduce a large class of rate 1/2 balanced
complex orthogonal designs (BCODs) (see Section III). These
BCODs are generated using a modification of the well-known
Liang algorithm for generating maximum rate CODs [9]. This
class of CODs is important because they are the only known type
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rate 1/2 CODs that simultaneously achieve transceiver
signal linearization, are power-balanced, have no irrational co-
efficients, have no linear processing, and, for most numbers of
columns, achieve the conjectured lower bound on decoding delay
(i.e., they perform well with respect to design considerations C3
and C5-C7, as well as C2 for most numbers of columns).

One of the major contributions of this paper is determining
the exact minimum decoding delay for most BCODs (see
Section IV). This is the first known proof concerning the
minimum decoding delay for a large class of rate 1/2 CODs.
Previously, the only proof regarding the minimum decoding
delay of rate 1/2 CODs was limited to the case of nine columns
[21]. Our work represents a significant step towards resolving
the minimum decoding delay question for all rate 1/2 CODs.

In Section V, we also present an elegant algorithm to con-
struct rate 1/2 CODs of type . These CODs achieve the
conjectured lower bound on delay for most numbers of columns,
thus performing well with respect to design consideration C2.
Furthermore, for any number of columns, these designs perform
well with respect to C4-C7. This is the first known class of rate
1/2 CODs that achieve low delay, no zeros, power balance, no
irrational coefficients, no linear processing for any number of
columns, and are obtained through a holistic algebraic approach
avoiding algorithms that are iterative, case-based, and/or reliant
on pre- or postmultiplication by unitary matrices. It is inter-
esting to note that Das and Rajan [21] generate well-performing
type rate 1/2 CODs through a seemingly completely
different approach, yet a close comparison of their and our de-
signs show that the different approaches can actually be recast
to appear more similar. It is possible to recast our holistic al-
gebraic approach into one that uses premultipication by unitary
matrices. We omit these details as our algebraic approach has
advantages such as allowing for mathematical proofs regarding
certain properties of the designs. We also remark that our pro-
posed codes satisfy the guidelines recently proposed by Yuen et
al. for practical orthogonal space-time block codes [11].

We note that our BCOD construction of Sections III and IV
supports transceiver signal linearization (C3), but fails to have
low PAPR (C4), while the opposite is true for our type
construction of Section V. This, along with the works cited in
the previous subsection, highlights the inherent conflict between
different implementation issues and gives a sense of the math-
ematical compromises that must be made when constructing a
COD.

II. PRELIMINARIES

In this section, we develop some algebraic notation and re-
view some useful results.

Throughout this paper, we use the following standard equiv-
alence operations which can be performed on any COD: 1) re-

arrange the order in which the rows appear in the matrix (“row
rearrangements”); 2) rearrange the order in which the columns
appear in the matrix (“column rearrangements”); 3) conjugate
and/or negate all instances of certain variables; and 4) multiply
any row and/or column by .

For example, given a COD , we can perform a series of
row rearrangements represented by the function to obtain a
COD whose rows are the rows of simply appearing in a
different order. We say that and are equivalent designs,
and throughout this paper we will consider various equivalent
versions of a given design. Through a minor abuse of notation,
we often refer to any , where represents any combination
of equivalence operations, still as .

For any COD with or columns, and for any fixed
, Liang showed that the orthogonality constraint

implies that it is possible to transform through equivalence
operations so that the following submatrix , which contains
all appearances of the variable , appears within the top
or rows, respectively, [9]

We generalize the notion of displaying the submatrix to
say that is in form if the rows of the submatrix appear
in some order within , up to the conjugation and sign of their
entries. This notion of form first appeared in [12].

In the study of rate 1/2 CODs with columns, it is natural to
consider examples wherein the submatrices and each
have exactly one zero per row and one zero per column. In these
examples, it is possible to rearrange the rows/columns of so
that , hence , have zero entries along the diagonal. Gen-
eralizing Liang’s work on the submatrix, we define the strong

submatrix to be the usual submatrix with the additional re-
quirement that the submatrix has 0 entries along the diagonal.
We say that such a COD is in strong form if the rows of the
strong submatrix appear in some order within the rows of ,
up to the conjugation and sign of their entries.

The Hurwitz-Radon numbers are important in the study
of collections of mutually orthogonal matrices and are defined
as follows: If and , where , and

are integers with , then [27]–[29].
Liang [9] reviews that this is equivalent to the following:

Then, following Liang’s notation, we can define
. Finally, writing , we have

the equation at the bottom of the page [9]. The function
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then simplifies as shown in the equation at the bottom of the
page.

Recently, algorithms have been developed to show that ,
which simplifies to or depending on the parity of

or modulo 8, is an upper bound on the decoding
delay for rate 1/2 CODs with columns [10]. In Section IV, we
prove that is also a tight lower bound for a major class of
rate 1/2 CODs.

III. BALANCED COMPLEX ORTHOGONAL DESIGNS

In this section, we present an important class of rate 1/2
CODs named balanced complex orthogonal designs (BCODs).
We begin by describing a modification of Liang’s well-known
algorithm for generating maximum rate CODs [9]; this modi-
fied-Liang algorithm generates rate 1/2 CODs for any number
of columns. It is convenient in this modification to directly
generate CODs, and then use column deletion
to obtain CODs, so we will only describe
the algorithm for the case with columns.

The four steps of our modification follow closely the four
steps of Liang’s algorithm [9], with the only significant changes
occurring in Steps 1 and 3. Step 1 of Liang’s algorithm initial-
izes the scaled identity submatrices of while leaving
and empty. Step 1 of our modified-Liang algorithm com-
pletes the same assignments with the additional placement of
zeros along the main diagonals of and .

Step 3 of Liang’s algorithm fills the empty entries of a
submatrix with new complex variables, each appearing once as

and within and submatrices, respectively. In
contrast, Step 3 of our modified-Liang algorithm fills the empty
entries of a submatrix with new complex variables each ap-
pearing once as both and in and once as both and

in such that if the strong submatrix appears in
for any , then the submatrix is skew-symmetric with zeros
along the diagonal.

The details of the algorithm are left to the reader, who can
follow Liang’s presentation with the above changes to obtain
the desired rate 1/2 CODs. Furthermore, we can mimic Liang’s
proofs concerning the number of variables in his resulting
CODs to prove that our modified algorithm gives a delay of

, thus producing CODs. Then, by deleting
any column, we obtain CODs. Thus, the
modified-Liang algorithm (with the deletion of columns as
necessary) confirms the upper bound on decoding delay of

when or is congruent to 2, 3, 4, 5,
or 6 modulo 8 (while the delay is when is congruent to
0, 1, or 7 modulo 8).

Although other algorithms have been proposed recently that
establish this upper bound of for all congruence classes
of [10], the modified-Liang algorithm given here has some
important advantages. As we will discuss in more detail below,
our modified-Liang algorithm generates the only known type

rate 1/2 CODs that perform well with respect to all
of design considerations C3, C5, C6, and C7 for all numbers of
columns and that additionally perform well with respect to C2
for most numbers of columns.

We now incorporate some of the algebraic and combinatorial
properties of the CODs generated by the modified-Liang algo-
rithm in following definition:

Definition 3.1: A COD with columns is a bal-
anced complex orthogonal design (BCOD) if it satisfies the fol-
lowing conditions.

1) For each and each appear times
(up to sign).

2) Every row of has exactly zero and nonzero entries.
3) is conjugation-separated.
4) For each , the submatrix of the strong

submatrix is skew-symmetric.
It follows that any BCOD (generated from any algorithm,

not restricted to our modified-Liang algorithm) is a rate 1/2
COD for some positive integers .

By condition 1), for any BCOD, the submatrix of any
submatrix is size . Furthermore, condition 2) implies that

(resp., ) has exactly one zero per row, which implies
that (resp., ) has exactly one zero per column. Thus,

and each have exactly one zero per row and one zero
per column. So it is possible to rearrange the rows/columns of

so that , hence , have zero entries along the diag-
onal, thereby obtaining the the strong submatrix defined in
Section II. This regular structure with predictable zero patterns
may be exploitable in applications.

All codes generated by the modified-Liang algo-
rithm have the additional property that the submatrices of
all strong submatrices are skew-symmetric, so that

for all . We call this the skew-symmetric subma-
trix property (SSSP), which we have observed to be a result of
conditions 1)–3) in Definition 3.1, regardless of the algorithm
used to generate the design.

When evaluating BCODs against the design considerations
outlined in Section I-A, we see that BCODs are desirable codes.
Condition 3) implies that these codes can achieve transceiver
signal linearization [17], which is design consideration C3.
It also follows directly from their definition that that BCODs
perform well with respect to considerations C5–C7, as they are
power-balanced and have no irrational coefficients or linear
processing. Furthermore, these CODs have an even number
of columns, which is preferable in practice: An analysis of
outage probability concluded that codes with an even number
of antennas outperform comparable codes with an odd number
(one more or one fewer) of antennas [30], and this analysis was
extended to include other performance measures such as the
mean-square error and the bit-error rate [31]. We conclude that
the proposed BCODs are expected to be among the most useful
type rate 1/2 CODs for practical implementations,
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especially when the number of columns is congruent to 2, 4,
or 6 modulo 8 so that they achieve a decoding delay of (the
conjectured lower bound on minimum decoding delay). Indeed,
in these cases, they are the only known type rate 1/2
CODs that perform well with respect to C2, C3, and C5–C7.
These BCODs are easily generated via the modified-Liang
algorithm, and they are combinatorially rich.

In the following Section IV, we will show that the upper
bound of on the decoding delay of rate 1/2 CODs is also
a lower bound for BCODs and is the exact minimum decoding
delay for most BCODs. We will also use these BCODs in
Section V as building blocks for low PAPR rate 1/2 CODs.

IV. THE MINIMUM DECODING DELAY OF BCODS

In this section, we prove that the upper bound of on the
minimum decoding delay of rate 1/2 CODs with columns is
also a lower bound on minimum decoding delay for BCODs.
In most cases, this lower bound is tight and achievable, thus
proving the exact minimum decoding delay of most BCODs. We
begin by reviewing some notation introduced in [32], slightly
modified here for our specialized application.

Definition 4.1: Let be a COD. We define a row companion
matrix by permuting the rows of according to a permuta-
tion with order 2, so that and is fixed-point free.

As an example, note that given a BCOD , we
can build a row companion matrix using the order 2 permuta-
tion with cycle notation . Then,
if denote the rows of in order, the rows of

are in order. If denotes the
th column of for all , then represents

the th column of .

Definition 4.2: A COD is zero-maskable by rows if the
rows of can be partitioned into pairs such that the two rows
in a given pair are never both zero in the same column. If we
form a row companion matrix whose rows are, in order, the
zero-masking partners of the rows of , in order, then is
called a zero-masking row companion for .

Note that if a COD is a zero-masking row companion of a
COD , then has no zero entries.

Lemma 4.3: Let be a BCOD. Every row of
has precisely one other partner row so that i) and

have complementary zero patterns; ii) and have opposite
conjugation; and iii) and include the same variables.

Proof: Let be any nonconjugated row of , and let be
any variable included in . Apply an appropriate series of equiv-
alence operations, denoted by , to so that contains the
strong submatrix in its top rows with row as the
first row of . By the definition of the strong submatrix,
rows 1 and have complementary zero patterns and oppo-
site conjugation, and the SSSP implies that these rows include
precisely the same variables. This last implication follows from
the observation that . Applying equivalence oper-
ations to restore to while keeping track of the rows, we
will have shown that row in has at least one partner row. If
there were two partners for , then there would be two rows in

strong form both having identical zero patterns, a contradic-
tion. Now choose any different nonconjugated row of and
repeat the process. The partner row for cannot already have
been used since that would mean that had a previous row with
complementary zero pattern and including the same variables,
but that could only happen if had already been chosen. Con-
tinue in this manner until all rows have been paired.

We now introduce an additional piece of machinery. Con-
sider a BCOD . Define as a column vector
of length that is in any row in which is conjugated and

in any row in which is nonconjugated. This is a well-de-
fined construction, as is conjugation-separated. Then, for any
column vector of length , let denote the compo-
nent-wise product of and . For example, given a column
of is obtained from by simply negating all con-
jugated variables in . Let denote the matrix obtained
by applying to all columns of . Then is another
valid BCOD, as negating rows is a valid equivalence operation
for CODs and it does not affect the additional requirements of a
BCOD.

As final preparation for our main result in this section, we
recall that the minimum decoding delay for a rate 1 ROD
with columns is given by [9], [28], [29]. In the proof
of the following main result, we will show that the existence
of a BCOD implies the existence of a rate 1

ROD. Then, the tight lower bound of on
the delay of rate 1 RODs implies the same lower bound on the
delay for BCODs.

Theorem 4.4: Let be a BCOD. Then a lower
bound on the minimum decoding delay of is .

Proof: Let be an BCOD. Define its zero-
masking row companion matrix using the permutation de-
fined on the rows of by , where and are the
partner rows guaranteed to exist by Lemma 4.3. Note that re-
spective rows of and have complementary zero patterns,
opposite conjugation, and the same variables; also, is the
identity and is fixed-point free. Then, since is conjuga-
tion-separated, we can consider the BCOD , which is ob-
tained by negating all of the conjugated rows of . For conve-
nience, let .

For all , let map the complex variables in an
arbitrary COD to real variables while preserving sign, and
let map the complex variables in an arbitrary COD to real
variables while preserving sign. When a real variable
has a complex preimage that is conjugated, the real variable
will be denoted as . We will now show that with and as
above, is a rate 1 ROD.

We observe that and have complementary zero
patterns, so their sum will be a matrix with no zeros and no
linear combinations of the real variables. So
is a matrix with entries from the real variables

. It is clear that and are individually
RODs and hence

and . Thus,
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So it remains to prove that
.

If is any matrix, then we use the notation and
to respectively refer to the th column and entry of .
Consider . If , then since the columns
of and have complementary zero patterns. So we
consider the case where . Contributions to this entry
come from the inner product of with and the inner
product of with . We will show that given a con-
tribution to these inner products from an arbitrary th row, con-
tributions are then implied from additional rows such that all
contributions cancel to 0 as desired.

Consider an arbitrary row index , and assume that
and , where and are

real variables whose respective preimages under and are
complex variables and . The defining condi-
tions of imply that exactly one of these entries is conjugated.
We may assume without loss of generality that both entries are
positive by negating columns (an equivalence operation) as nec-
essary.

For simplicity, we will first consider the case where , so
that and . Then, Lemma 4.3
implies that the row of with index has a partner row with
some index such that ,
and .
So rows with index contribute the summand in
the inner product of with and a summand of 0
in the inner product of with ; the rows with index

contribute in the inner product of with
and a summand of 0 in the inner product of with
. Thus, the relevant contributions from rows with index

are canceled by the contributions from rows with index , and
we have , as required.

Now consider the case where . Then, as above, the rows
with index contribute to . Lemma 4.3 implies
that there exists some index such that and

. Thus, rows with index provide the sum-
mand within the inner product of with
and provide a summand of 0 within the inner product of
with . Hence, the rows with indices and provide a
total contribution of in .

Note that there is a row with some index such that
, since each column must contain an instance

of each variable. We may assume without loss of generality
that this entry is positive (negate the row if necessary). This
instance of must have a nonconjugated preimage . To
see this, suppose to the contrary that . Since

, the definition of from Lemma 4.3 implies
for some . If , then

the entries and would
make orthogonality impossible in the preimage, a contradiction.

Now, if is the index of the row partner for row of , then
the SSSP applied specifically to the strong submatrix implies
that . So and

, which implies that and
. Hence, the rows with indices and provide a total

contribution of in . It follows that
, as required.

We have shown that the existence of a BCOD
implies the existence of a ROD. Now, the tight
lower bound of on the decoding delay for rate 1 RODs
[9], [28], [29] implies that is also a lower bound on the
decoding delay of BCODs.

Corollary 4.5: Let be a BCOD. Then the lower bound of
on decoding delay of is achievable when is congruent

to 2, 4, or 6 modulo 8; thus, is the exact minimum decoding
delay for BCODs with columns when is congruent to 2, 4,
or 6 modulo 8 columns.

Proof: This follows directly from the modified-Liang al-
gorithm of Section III and the fact that for
congruent to 2, 4 and 6 modulo 8.

We reiterate that the modified-Liang algorithm also shows
that the upper bound of is achievable when the number
of columns is congruent to 3 or 5 modulo 8, though it does
not demonstrate achievement when the number of columns is
congruent to 0, 1, or 7 modulo 8; it still provides a delay of
in these cases, however this is equal to for such values of

.
We conjecture that in the case of 0 modulo 8 columns, it

is impossible to achieve this bound with balanced CODs. For
BCODs, we conjecture that this case of 0 modulo 8 columns
has a tight lower bound of ; in order to achieve in this
case, we must sacrifice, for example, conjugation-separation or
introduce linear processing or irrational scalar coefficients.

Our major contribution in this section was to prove that
is the exact minimum decoding delay for a large and important
class of rate 1/2 CODs. This leads us to conjecture that is
also the exact decoding delay of more general rate 1/2 CODs.
This conjecture has been made independently by others, as well
[10].

V. LOW PAPR, LOW DELAY, RATE 1/2 CODS

In this section, we prove the existence of a class of rate 1/2
CODs that perform well with respect to design considerations
C4–C7 and with respect to the guidelines of Yuen et al. [11]:
they have no zero entries, each variable appearing exactly twice
per column, effectively no irrational coefficients, and no LP.
They also meet the conjectured lower bound on decoding delay
in most cases. A distinguishing feature of these codes is that
they are rich with algebraic and combinatorial structures. Fur-
thermore, our construction technique is simple, relying only on
the CODs obtained by our straight-forward modified-Liang al-
gorithm in Section III. The technique does not require iterative
building.

In the following Lemma 5.1, we will prove that any
BCOD has a zero-masking row companion

matrix with some additional properties that will be required
in the proof of Theorem 5.2, our main result in this section.

Lemma 5.1: Any BCOD has a
zero-masking row companion matrix such that if row of
is conjugated, then row of will be nonconjugated, and vice
versa, for all .

Proof: This lemma follows directly from Lemma 4.3, how-
ever the following proof avoids reliance on the skew-symmetric
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matrix property in the definition of BCODs, giving a poten-
tially more general result. It also provides more intuition re-
garding the structure of these designs, and it introduces some
algebraic machinery that may be useful in future research re-
garding CODs.

We first define an equivalence relation on the rows of a
BCOD. Suppose and are rows of a BCOD : define
if these rows have zeros in the same positions. We can easily
see that is an equivalence relation with equivalence classes

. We note that if and
only if for any combination of equivalence
operations on the matrix . Similarly, rows and have
complementary zero patterns if and only if and have
complementary zero patterns. We can choose to represent
the necessary operations to transform into strong form,
make observations about what happens there, and transfer those
observations back to the original matrix . For example, if
has columns, then if some instance of (or ) occupies
a position in a row in , then there is a row in that
has complementary zero pattern to that has an instance of

(or ) occupying one of its positions because that is true
in strong form. Thus, whenever has columns, every
equivalence class will have a complementary equivalence
class with the additional property that variables in
correspond to conjugations of the variables in (up to
sign). If some instance of occupies a position in a row and

, then no instance of can occupy a position in (if
it did, then when we would have two rows in strong form
with the same zero pattern, an impossibility). Thus, there are
no repeated variables in any of the rows in an equivalence class.
We will now use these observations to create a zero-masking
companion matrix for the given BCOD .

The zero-masking row companion matrix for the given
BCOD will be found by swapping the placement of certain
pairs of rows of , where the pairs of rows of will have com-
plementary zero patterns and opposite conjugation. Given an
equivalence class , condition 3) of the definition of BCODs
implies that any rows in this equivalence class contain vari-
ables that are either all conjugated or all nonconjugated. Given

, consider a row with the complementary zero pat-
terns; such a row exists according to our discussion in the
preceding paragraph. It also follows from the discussion above
that for every nonconjugated variable that appears in one of
the rows of , there is a conjugated appearing in a row
of . Since there are no repeated variables within an equiva-
lence class, this implies that the number of nonconjugated rows
in is the same as the number of conjugated rows in . We
can pair them however we like. An analogous argument enables
us to pair conjugated rows from with nonconjugated rows
in . Thus, there is a well-defined pairing of rows of such
that the rows within each pair have complementary zero pat-
terns and opposite conjugation. Define the order 2 permutation

to swap rows within these pairs, and then use to define the
zero-masking row companion . In conclusion, we have shown
that any BCOD has a zero-masking
row companion matrix . Furthermore, if row of is conju-
gated, then row of will be nonconjugated, and vice versa,
for all .

We note for clarity that although the permutations and
guaranteed to exist by Lemmas 5.1 and 4.3, respectively, are
very similar and can be identical in certain examples, the per-
mutation represents a more specific pairing of rows that re-
sults in paired rows having the same variables; the existence of

relies on the SSSP. We have observed, however, that all of
our examples of conjugation-separated rate 1/2 CODs that have
a zero-masking companion in which partner rows have opposite
conjugation (thereby satisfying the requirements in the proof of
Lemma 5.1), also have the SSSP.

Theorem 5.2: Let be a BCOD, and let be
a zero-masking row companion obtained via a permutation
as described in Lemma 5.1. Then, is a rate 1/2

COD of type .
Proof: The following proof does not rely on the SSSP.

Let be a BCOD on variables . Form
a zero-masking row companion matrix on vari-
ables using the order 2 permutation that is guaran-
teed to exist by Lemma 5.1. Then and are valid BCODs
with opposite zero patterns, and their rows have opposite conju-
gation. Also, since is conjugation-separated, we can consider
the BCOD .

Consider . Note that due to the opposite zero pat-
terns of and has exactly one complex variable
in each position; there are no zero entries or linear combinations
of complex variables. We will now show that is a

COD of type on variables

It remains to show that , or
equivalently, that . We will do this
by showing that the entry of is equal to the
negative of the entry of .

The entry of is obtained as the dot product
of the conjugation of the th column of and the th column
of . Let represent the th column of for all

, and then represents the column obtained by
conjugating all nonzero entries of . Then, the th column of

can be expressed as , as it is obtained by
applying to the order 2 permutation that is guaranteed to
exist by Lemma 5.1, and then by applying the sign function
to this resulting column. Hence, the entry of
is expressed as . Similarly, the entry of

is denoted by .
Hence, we want to show that

.
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We have

(1)

(2)

(3)

(4)

(5)

Line (1) follows from the fact that the dot product of permuted
vectors equals the dot product of the original vectors. To see
(2), we observe that . Applying
to both vectors in (2) does not change the dot product, showing
(3). Finally, implies (4). Now (5) follows
directly.

Hence, , so
is a rate 1/2 COD of type on complex

variables . Every variable appears exactly twice per
column and there are no zero entries.

This theorem provides a construction algorithm which, when
followed by column deletion as necessary, provides an impor-
tant class of rate 1/2 CODs for any number of columns. We have
shown in Section III that the BCOD building blocks exist and are
readily obtainable for any number of columns . (Though con-
venient, it is not required to use BCODs as the building blocks,
but rather any rate 1/2 CODs such that appropriate zero masking
companions exist.) Furthermore, for congruent to 2, 3, 4, 5,
or 6 modulo 8, these low PAPR codes satisfy the bound of
on decoding delay.

The resulting low PAPR codes are expected to be among the
most useful rate 1/2 CODs due to their simple algorithm and
their properties related to design considerations C2 and C4–C7.
As an example of the construction algorithm, we consider the
following BCOD obtained via the modified-Liang algorithm

Then, using the permutation
, we obtain a zero-masking companion . We obtain a

desirable COD of type through the
construction

VI. CONCLUSION

We have shown that the upper bound of on the de-
coding delay of rate 1/2 CODs is also the lower bound on
decoding delay for rate 1/2 balanced complex orthogonal de-
signs (BCODs). Furthermore, it is the exact minimum decoding
delay for BCODs with columns. BCODs achieve
transceiver linearization, are power-balanced, have no irra-
tional coefficients, no linear processing, and an even number
of columns. Due to these properties, we expect that they will
be among the most suitable for applications, as well as being
among the most interesting combinatorially.

We also presented a family of type rate 1/2 CODs
that have low PAPR due to no zero entries, are power-balanced
with each variable appearing exactly twice per column, effec-
tively no irrational coefficients, and no linear processing. They
achieve a decoding delay of for most equivalence classes of

modulo 8. These CODs are obtained via an elegant algorithm
that uses the algebraic and combinatorial properties of designs,
rather than using iterative algorithms as done previously.

Although we presented achieving a decoding delay of
as a positive quality for rate 1/2 CODs, it is important to stress
that the bound of grows exponentially with the number of
columns. While this is a significant improvement over the fac-
torial growth of the delay of maximum rate CODs with only a
small sacrifice in rate, it is still too large for practical applica-
tions with large numbers of antennas.
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