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Abstract—Complex orthogonal designs (CODs) have been suc-
cessfully implemented in wireless systems as complex orthogonal
space-time block codes (COSTBCs). Certain properties of the
underlying CODs affect the performance of the codes. In addition
to the main properties of a COD’s rate and decoding delay, a third
consideration is whether the COD can achieve transceiver signal
linearization, a property that facilitates practical implementation
by, for example, significantly simplifying the receiver structure for
iterative decoding. It has been shown that a COD can achieve this
transceiver signal linearization if the nonzero entries in any given
row of the matrix are either all conjugated or all nonconjugated.
This paper determines the conditions under which maximum rate
CODs can achieve this desirable property. For an odd number
of transmit antennas, it is shown that maximum rate CODs that
achieve the lower bound on decoding delay can also achieve
transceiver signal linearization. In contrast, for an even number
of transmit antennas, maximum rate CODs that achieve the lower
bound on delay cannot achieve this linearization. In this latter
case, linearization is possible only if the COD achieves at least
twice the lower bound on delay. This work highlights the tradeoffs
among these three important properties.

Index Terms—Complex orthogonal designs (CODs), iterative de-
coding, space-time block codes, transceiver signal linearization.

I. INTRODUCTION

W E define an complex orthogonal de-
sign (COD) as an matrix with en-

tries from such that
, where is the Hermitian trans-

pose and is the identity matrix [1], [2]. Geramita and
Seberry provide a comprehensive review of classical orthogonal
designs [3], and Liang reviews and defines their generalizations
[4]. Examples of the type of CODs considered in this paper can
be found readily in the literature (e.g., [2], [5]). Such CODs
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have been applied as complex orthogonal space-time block
codes (COSTBCs), which are useful in wireless applications
due to their simple maximum-likelihood decoding rule and
their guarantee of full diversity [1].

Several factors must be considered when choosing the under-
lying COD for application in a practical coding system. The rate
(i.e., the ratio of the number of variables to the number of rows)
and the minimum decoding delay (i.e., the minimum number
of rows) for a given rate are two of the fundamental consider-
ations. A third consideration is whether the COD allows for a
linearized description of the received signal, as achieved by the
original Alamouti code [6]. In his fundamental paper, Alamouti
[6] used the following underlying COD:

(1)

Alamouti showed that for a flat-fading channel that is assumed
constant over two consecutive symbol times, the received signal
for his transmit diversity system can be expressed as

where and are the received signals at times and ,
respectively, and are complex receiver noises, and and

are the complex channel gain coefficients. Therefore, the re-
ceiver can be based on the use of a linear combiner producing
two combined signals

which are then sent to the maximum likelihood detector for de-
coupled decoding. The full concept of the process is described
in detail in Haykin and Moher’s textbook [7]. Alamouti showed
that this process can be easily extended to multiple receive an-
tennas [6], and Lu and Wang further extended the approach to
multiuser scenarios [8]. In general, the same receiver structure
based on a linear combiner can be applied if the received signal
vector has the following form:

where the elements of the vector are either samples of the
received signal or their conjugates, the matrix con-
tains complex linear combinations of channel state coefficients
and their conjugates, and the th component of represents the
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equivalent noise effect observed in time slot ,
[9].

This latter form is often referred to in the literature (e.g.,
[8]–[11]) as a linearized description of the transceiver signal,
and we say that the code achieves transceiver signal lineariza-
tion. This description allows for the application of a linear com-
biner before a maximum likelihood detector. This significantly
simplifies the receiver structure, particularly for iterative de-
coding such as in the receivers studied by Lu and Wang [8] and
the RAKE-based receivers studied by Jayaweera and Poor [10].

Su, Batalama, and Pados recently determined the conditions
under which a COSTBC permits such a linearized received
signal expression [9]. Specifically, they showed that if the
underlying COD can be arranged so that the nonzero entries
in any given row are either all conjugated or all nonconjugated,
then can achieve this linearization [9]. If achieves this
property, we say that it is conjugation-separated. Su et al.
also noted that the tranceiver signal linearization is important
because it allows for backwards compatibility with a variety of
signal processing techniques and for the design of certain low
complexity filters and equalizers [9].

Su et al. focused on determining when square CODs can
achieve conjugation-separation, hence transceiver signal lin-
earization [9]. Unfortunately, they determined that the rate of
such square CODs approaches zero as the number of columns
(i.e., antennas) increases [9]. Since a higher rate is preferred in
practice, their work motivated us to determine the conditions
under which rectangular CODs of higher rates, namely of max-
imum rate, can achieve transceiver signal linearization. Liang
determined that the maximum rate for a COD with or

columns is [2], so our focus is to determine
the conditions under which a COD with this maximum rate can
achieve transceiver signal linearization. Since these maximum
rate CODs are no longer square, as opposed to the square CODs
considered by Su et al. [9], we must also aim to minimize their
decoding delay. Adams et al.. determined that a lower bound
on decoding delay for maximum rate CODs with or
columns is [12], which is achievable if the number
of columns is congruent to 0, 1, or 3 modulo 4, while the best
achievable delay when the number of columns is congruent to
2 modulo 4 is [13].

In this paper studying the tradeoffs among transceiver signal
linearization, rate, and decoding delay, we show that maximum
rate CODs that achieve the lower bound on delay can
achieve transceiver linearization if and only if the number of
columns is odd. When the number of columns is even, a max-
imum rate COD must achieve at least twice the lower bound
on delay (which is the best possible delay when the number of
columns is 2 modulo 4 [13]) in order to achieve this transceiver
signal linearization.

II. PRELIMINARIES

For any COD with or columns, and for any fixed
, , Liang showed that the orthogonality constraint

implies that it is possible to transform through equivalence
operations (e.g., rearrange order of rows/columns, negate rows/
columns, conjugate/negate all instances of a given variable) so

that the following submatrix , which contains all instances of
the variable (up to conjugation and sign), appears within the
top or rows, respectively, [2]

If is of maximum rate, Liang proved several properties con-
cerning the and submatrics [2]. For example, he showed
that if a maximum rate has columns, then has order

. If has columns, then is either
or . In this case, we will assume that is

; all proofs can be altered slightly for the alternative. He
also showed that these submatrices have no zero entries [2].

Let any (possibly noncontiguous) 2 2 orthogonal submatrix
of a COD that is isomorphic under equivalence operations to
Alamouti’s original COD (see (1)) be called an Alamouti 2 2.
We say that two rows of a COD share an Alamouti 2 2 over
two columns if the intersection of these rows and columns forms
such a 2 2 orthogonal submatrix.

We now recall a simple but powerful result originally proven
in Part 1) of Lemma 3.2 in [13]:

Result 2.1: [13] Let and be distinct rows of an
COD . Then, rows and share an Alamouti

2 2 over columns and if and only if and are
simultaneously nonzero exactly in columns and and never
simultaneously zero in any column.

III. TRANSCEIVER LINEARIZATION OF MAXIMUM

RATE COSTBCS

In this section, we prove our main result by determining when
a maximum rate COD can achieve conjugation-separation (as
described above to mean that in any given row, the nonzero en-
tries are either all conjugated or all nonconjugated). Then, the
recent work by Su et al. [9] implies that such CODs can be im-
plemented to achieve transceiver signal linearization. This lin-
earization is beneficial for practical systems, particularly those
involving iterative decoding [8], [10].

Theorem 3.1: Let be a maximum rate
COD that achieves the lower bound on decoding delay. Then,

is equivalent to a COD that is conjugation-separated, and,
therefore, this arrangement of can achieve transceiver signal
linearization.

Proof: We can perform suitable equivalence operations to
create the submatrix for variable (see Section II). The first

rows of each contain zeros and one entry of ,
and the last rows of each contain zeros and
one entry of . Since all instances of (up to conjugation and
sign) appear within , all instances of contained in rows
with zeros are nonconjugated, and all instances of
contained in rows with zeros are conjugated.

Now, without affecting the conjugation of the instances of
, we can perform equivalence operations on to move from

displaying to displaying another submatrix for
[2], [12]. Every instance of (up to conjugation and sign) will
appear within this submatrix [2], [12]. By known properties
of (see Section II), it is possible to conjugate all instances of

so that the instances of within rows with zeros are
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nonconjugated and the instances of within rows with
zeros are conjugated.

We can repeat this procedure by rearranging to display
for each . When a specific is formed,

it may be required to conjugate all instances of so that rows
with zeros have nonconjugated versions of and rows
with zeros have conjugated versions of . Since every
instance of an arbitrary variable appears within , and since
this variable only undergoes possible conjugation when is
arranged to display the submatrix, this procedure ensures
that any variable within a row with zeros is nonconjugated
and any variable within a row with zeros is conjugated.
Hence, is equivalent to a COD that achieves conjugation-
separation and, hence, transceiver signal linearization.

Theorem 3.2: Let be a maximum rate COD
that achieves the lower bound on decoding delay. Then no ar-
rangement of is conjugation-separated.

Proof: We recall for clarity that a COD with columns
for odd cannot achieve the decoding delay of [13], so the
conditions of this theorem imply that is even. Now, assume
for contradiction that is arranged to be conjugation-separated.

We have previously shown [13] that it is possible to select
rows of such that for each , row and

row share an Alamouti 2 2 over columns and .
Furthermore, rows will be distinct, while

.
We begin with row of the following form, and since is

assumed to be conjugated-separated, we can assume that every
entry represents a nonconjugated variable (positive or nega-
tive)

Then, row is selected as a row that shares an Alamouti
2 2 with row over columns and . Thus, its entries in
columns and must be conjugated to ensure the orthogo-
nality of the Alamouti 2 2. Then, by our assumption of conju-
gation-separation, the remaining nonzero entries of will also
be conjugated. Thus, by Result 2.1, has the following form:

where represents any conjugated variable (positive or nega-
tive).

Iterating this procedure allows us to start with the given
and produce . To maintain conjugation-separation,
to form the requisite Alamouti 2 2 s between rows and ,
and since row is assumed to be nonconjugated, all rows with
odd subscript are nonconjugated and all rows with even sub-
script are conjugated. So, in particular, is nonconjugated and

is conjugated. But this contradicts our earlier result that
. Hence, this contradiction shows that a maximum

rate COD with an even number of columns cannot simultane-
ously achieve the lower bound on decoding delay and conjuga-
tion-separation.

Theorem 3.3: It is possible to construct a maximum rate COD
with any even number of columns that simultaneously achieves

TABLE I
SUMMARY OF RESULTS ON THE DELAY AND TRANSCEIVER SIGNAL

LINEARIZATION (TSL) OF MAXIMUM RATE CODS WITH UP TO TEN COLUMNS

TABLE II
GENERAL RESULTS INDICATING WHEN MAXIMUM RATE, MINIMUM DECODING

DELAY CODS CAN ACHIEVE TRANSCEIVER SIGNAL LINEARIZATION (TSL)

conjugation-separation and twice the lower bound on decoding
delay.

Proof: This proof relies on the work of other authors. We
first note that Su et al. use conjugation-separation (though not
referred to as such) as a fundamental characteristic of their
construction technique [5]. Their algorithm generates CODs
with any even number of columns that achieve maximum rate,
conjugation-separation, and twice the lower bound on decoding
delay. Additionally, Liang’s algorithm [2] generates maximum
rate CODs with an even number of columns that achieve twice
the lower bound on decoding delay. Steps 3) and 4) of his
algorithm ensure that his examples are conjugation-separated
(though, again, not referred to as such). These algorithms show
that it is possible for a maximum rate COD with any even
number of columns to simultaneously achieve conjugation-sep-
aration and twice the lower bound on decoding delay. As no
maximum rate COD can achieve a delay that is between the
lower bound and twice the lower bound [12], this is the best we
can do in terms of delay under these restrictions.

IV. CONCLUSIONS

This paper determines the conditions under which maximum
rate COSTBCs can simultaneously achieve transceiver signal
linearization and optimal decoding delay. A COSTBC achieves
such linearization when the underlying COD is conjugation-
separated [9]. For any odd number of columns, we showed that
there exist maximum rate CODs that simultaneously achieve
conjugation-separation and the lower bound on decoding delay.
For any even number of columns, a maximum rate COD that
achieves the lower bound on delay cannot achieve conjugation-
separation; however, for any even number of antennas, there ex-
ists a conjugation-separated COD that achieves twice the lower
bound on delay. In the case when the number of columns is 2
modulo 4, achieving twice the lower bound on decoding delay
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is the best possible delay, while in the case of 0 modulo 4, this is
twice the best achievable delay. These results are summarized
in Table I for up to ten columns, while Table II summarizes the
general results.

These results contribute to the understanding of the tradeoffs
that must be made when considering the optimization and
implementation of COSTBCs. Of course, it is only for two
antennas that we can simultaneously achieve full rate, square
size (meaning lowest possible delay), and transceiver signal
linearization. As the number of antennas increases, there is a
sacrifice in some or all of these parameters.
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