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The Final Case of the Decoding Delay Problem for
Maximum Rate Complex Orthogonal Designs
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Abstract—Complex orthogonal space–time block codes
(COSTBCs) based on generalized complex orthogonal designs
(CODs) have been successfully implemented in wireless systems
with multiple transmit antennas and single or multiple receive
antennas. It has been shown that for a maximum rate COD with
�� � � or �� columns, a lower bound on decoding delay is
��

���
and this delay is achievable when the number of columns

is congruent to �, �, or � modulo �. In this paper, the final case
is addressed, and it is shown that when the number of columns
is congruent to � modulo �, the lower bound on decoding delay
cannot be achieved. In this case, the shortest decoding delay a
maximum rate COD can achieve is twice the lower bound. New
techniques for analyzing CODs are introduced with connections
to binary vector spaces.

Index Terms—Complex orthogonal designs, decoding delay,
diversity, multiple-input multiple-output (MIMO) systems,
space–time block codes.

I. INTRODUCTION

C OMPLEX orthogonal space–time block codes
(COSTBCs) based on generalized complex orthog-

onal designs (CODs) are attractive because they permit a
simple maximum-likelihood decoding rule and guarantee full
diversity [1]. Complex orthogonal designs have been defined
in a variety of ways [2]–[6], and the following generaliza-
tion, which has proven useful in signals processing, will be
used in this paper: An COD is an matrix
with entries from , such that

, where is the Hermitian transpose
and is the identity matrix [1], [7]. In this definition
of CODs, the designs are said to be combinatorial, in the sense
that there is no linear processing permitted in the entries. Each
variable , , appears exactly once per column and at
most once per row. When applied as a COSTBC, each column
contains the transmission data for a distinct antenna, and each
row contains the transmission data for a distinct timestep.
Geramita and Seberry provide a comprehensive review of
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classical orthogonal designs [8], and Liang reviews and defines
their generalizations [9].

Of key interest when studying COSTBCs, or equivalently
their underlying CODs, are the rate, defined as the ratio

of the number of information symbols (i.e., variables) to
the decoding delay (i.e., number of rows), and the minimum de-
coding delay (i.e., minimum number of rows) achievable for a
given rate.

Liang determined that the maximum rate for a COD with
or columns is , where is any natural

number [7]. Furthermore, Liang provided an algorithm for con-
structing maximum rate CODs for any number of columns [7].
Several other authors have also worked towards determining the
maximum rate and developing algorithms to produce high-rate
CODs [10]–[12].

Adams, Karst, and Pollack showed that a lower bound on
decoding delay for maximum rate CODs with or
columns is [13]. The algorithm by Lu, Fu, and Xia
proves that this bound is achievable if the number of columns
is congruent to 0, 1, or 3 modulo 4 [14]. Previously, only spe-
cial cases had been determined, generally using exhaustive tech-
niques specialized to the specific number of columns involved,
but conjectures had been made concerning the general result.
The cases with fewer than 5 columns are trivial. Liang addressed
CODs with 5 and 6 columns, and he left as an open problem
whether the formula held for and

for as he showed it held for , [7].
Kan and Shen addressed the lower bound on delay for CODs
with seven and eight columns [15], and Liang later confirmed
the eight-column case using a padding argument [16]. Kan and
Shen’s work showed that Liang’s conjecture needed to be mod-
ified. They conjectured to change the case when divides to

[15]. This conjecture by Kan and Shen is numerically
equivalent to the conjecture in [13], and it agrees with the re-
sults obtained therein for the cases of congruent to , , and

modulo [13]; these works developed independent of each
other and were focused on proving the lower bound for decoding
delay. The upper bound, through the development of algorithms,
has already been settled [7], [14].

The work in this paper closes the final case concerning
the minimum achievable decoding delay when the number of
columns is congruent to modulo . The result is consistent
with our previous conjecture [13] and the conjecture by Kan
and Shen [15], which is a modification of the original conjec-
ture by Liang [7].

The case where the number of columns is congruent to
modulo requires novel proof techniques, though it does build
on our previous work. Prior results show that if a maximum rate
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COD does not meet the lower bound on decoding delay, then its
delay must be an integer multiple of the lower bound [13]. In-
deed, the best algorithms to date for maximum rate CODs with

modulo columns produce examples that achieve twice
the lower bound on delay [7], [12], [14]. In this paper, we close
this final case by proving that the best achievable delay for max-
imum rate designs with columns, odd, is ,
or twice the lower bound. We conclude that for modulo

, a maximum rate, minimum decoding delay COD has param-
eters , and for modulo , a maximum rate,
minimum decoding delay COD has parameters .

Section II outlines some preliminary notation that is used in
the balance of the paper. In Section III, we introduce a standard
form for CODs that determines the sign of
each entry within the maximum rate, minimum decoding delay
COD. Section IV uses this standard form to prove that max-
imum rate CODs with columns for odd cannot achieve
the lower bound on decoding delay. It is then implied that the
best achievable delay in this case is twice the lower bound. The
paper is concluded in Section V.

II. PRELIMINARY NOTATION

We say that an entry of a COD contains an instance of a vari-
able if the entry is from . Liang [7] noted that given
a maximum rate COD with or columns over
variables , for any , , there exist suit-
able equivalence operations (i.e., rearrangements of rows and
columns, multiplications of rows and columns by , and con-
jugation and/or negation of all instances of certain variables) to
transform such that the first or (respectively) rows
of are of the form:

Liang further showed that if has columns, then is
. If has columns, then is either

or . In this case, we will assume that is
; all proofs can be altered slightly for the alternative.

We will also use Liang’s result that the submatrices have no
zero entries [7].

Let any (possibly noncontiguous) orthogonal submatrix
of a COD that is isomorphic under equivalence operations to
Alamouti’s original COD

be called an Alamouti . Throughout this paper, we will use
the fact that any Alamouti must contain an odd number
of negative entries and one conjugated and one nonconjugated
appearance of each of the two included variables.

Let any (possibly noncontiguous) orthogonal submatrix
that is isomorphic under equivalence operations to the following
matrix

be called a trivial . Since has no zero entries, any trivial
must contain either two conjugated or two nonconjugated

entries.
We say that two rows of a COD share an Alamouti or a trivial

over two columns if the intersection of these rows and
columns forms such a orthogonal submatrix.

III. STANDARD FORM FOR CODS

In this section, we present a standard form for maximum rate,
minimum delay CODs with columns, or in other words,
for CODs. The standard form dictates only
the sign of each entry, and we will show in Theorem 3.7 that it is
achieved through the equivalence operations of negating all in-
stances of certain variables (“instance negations”) and negating
all entries in certain rows (“row negations”). If a COD under-
goes such equivalence operations in order to achieve standard
form, we abuse notation when no confusion should occur and
denote this arrangement of the COD again by . To define this
standard form, we need the following notation.

Given an COD , for , let denote the
th column of , and for , let denote the th row

of . Define the support of as a binary vector of length
that contains a in every position in which is nonzero and a

in every position in which is zero.
We now introduce a set of basis vectors that will be used to

define the standard form. Define , , to be a binary vector
of length that contains in positions and , and in its
remaining positions. Note that . Define to
be a binary vector of length that contains a in position
and in the remaining positions. In the interest of space,
the details are left to the reader to show that for each

, the set of vectors }
forms a basis of the -dimensional binary vector space.

It now follows that any support for a row of length
can be written as a linear combination of vectors in , for any

. For a given basis and a given binary vector
, we write .

We call this the vector expansion of over .
Definition 3.1 presents the formal definition of the standard

form of a COD . Qualitatively, the standard
form is defined so that for each Alamouti submatrix of

, the entries in the left-hand column of have the same sign
and the entries in the right-hand column of have different
signs.

Definition 3.1: An COD is said to be in
standard form if the signs of the nonzero entries of are as fol-
lows. All nonzero entries in column are positive. A nonzero
entry at the intersection of row , , and
column , , has its sign dictated by the vector
expansion of over . If the weight of the vector consisting
of the first binary coefficients of this vector expansion,
denoted , is congruent to 0 modulo 2, then

is positive; if modulo , then

is negative.

Authorized licensed use limited to: Cornell University. Downloaded on January 26, 2010 at 10:44 from IEEE Xplore.  Restrictions apply. 



ADAMS et al.: MAXIMUM RATE COMPLEX ORTHOGONAL DESIGNS 105

If the sign(s) of an entry/column/matrix follow(s) the rules in
Definition 3.1, we say that the entry/column/matrix is in stan-
dard form, or simply that the entry/column/matrix has the cor-
rect sign(s).

To show that any COD can be put into
standard form, we first must formalize in the following lemmas
some connections among the definition of standard form, the
bases , and the conditions under which two rows share an
Alamouti or trivial .

Lemma 3.2: Let and be distinct rows of an
COD . Then, we have the following.

1) Rows and share an Alamouti over columns
and if and only if and are simultaneously nonzero
exactly in columns and and never simultaneously
zero in any column. If and , then the
standard form signs of entries and are dif-
ferent and the standard form signs of and
are the same.

2) Rows and share a trivial over columns
and if and only if and are simultaneously

zero or simultaneously nonzero in all columns except
and . If and , then for even,

modulo , and

for odd, modulo
.

Proof: See Appendix.

The following definition and lemma further formalize some
properties of rows that share Alamouti or trivial ’s.

Definition 3.3: Let be an COD. Recur-
sively define a set with respect to column using seed
row , denoted , to be a nonempty subset of rows of
obtained as follows: Choose an arbitrary row in as the ini-
tial seed for the set ; then include in all rows of
that share an Alamouti or trivial 2 2 with over columns
and , for all ; then include all rows that share an Alam-
outi or trivial with any of these rows over columns and

, for all ; continue this process until it does not produce
any new rows, and include each generated row exactly once in
the final set .

This recursive definition of a set with respect to column
is well defined, so that a given set can be generated

using any of its rows as the initial seed. This follows immedi-
ately from the symmetry of the relationship of two rows sharing
an Alamouti or trivial . When no confusion should occur
(i.e., as the choice of seed row is irrelevant), we write simply

.

Example 3.4: The following matrix is a COD
whose rows have been partitioned with a horizontal line into
2 2 sets with respect to column :

The reader can confirm that , and similarly
. We also note that for this COD , any

2 2 set with respect to column includes all four rows of the
COD.

Example 3.5: The following matrix is a COD
whose rows have been partitioned with horizontal lines into
2 2 sets with respect to column :

Lemma 3.6: Consider an COD . Then,
1) If for some , columns are in

standard form and if one entry in column within a row
of has the incorrect sign with respect to the standard
form, then all entries in within the rows of have
the incorrect signs.

2) If for some , column contains an
instance of a variable within a row in , then
contains all instances of found in columns ,
and these instances occur precisely in rows that share either
an Alamouti or trivial 2 2 with over column and
some column , .

3) For any given , distinct 2 2 sets for
column are disjoint and the union of all sets for

contains all rows in .
Proof: See Appendix.

We now leverage the previous lemmas to show that any
COD can be put into standard form through

the equivalence operations of instance negations and row
negations.

Theorem 3.7: Let be an COD. There
exists a sequence of equivalence operations to place in stan-
dard form by sequentially placing each column
in standard form.

Proof: We will prove this theorem using strong mathemat-
ical induction. For the base case, put in standard form by
negating all rows in which originally had a negative entry.
Now assume that columns are in standard form for
some . We will show that this implies
can be put into standard form through a specific series of equiv-
alence operations.
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Consider a set with respect to column . By
Part 1) of Lemma 3.6, we may assume that is a set
in which all the nonzero entries in column within the rows
of have incorrect signs. Then, given a row in

where modulo and which contains an
instance of some variable in column , negate all instances
of the variable within . This instance negation corrects the
sign on the entry in , but it makes the sign of any in-
stance of in columns incorrect. Hence, all entries
in columns within row are now correct, where
is a row in where modulo and

where is nonzero. Repeat this procedure by negating all
instances of any variable that appears in column within any
row in where modulo . It fol-
lows from Part 2) of Lemma 3.6 and from the proof of Lemma
3.2 that repeating this procedure on such rows does not harm the
standard form of the entries in columns within any
of the considered rows. So, at this point, correct signs have been
restored/obtained on all entries in columns within any
row such that modulo and
is nonzero. This completes what we call the instance-negation
phase of the algorithm.

In the second and final phase of the algorithm, dubbed the cor-
rection phase of the algorithm, we correct all entries in columns

that were made incorrect during the instance-nega-
tion phase of the algorithm. Specifically, by Part 2) of Lemma
3.6, the entries to be corrected are in rows that share Alam-
outi or trivial ’s over columns and some , , with
such above-described rows of .

For the first step of the correction phase of the algorithm, sup-
pose that is a row of that shares an Alamouti
with some such above-described row over columns and

for some . Suppose further that entry contains
an instance of a variable . Then, by the definition of an Alam-
outi , entry contains an instance of the variable

. It then follows that the instance of in entry was
given the incorrect sign during the instance-negation phase of
the algorithm. In fact, we will show that all nonzero entries in
columns within have the incorrect sign.

For any such that is nonzero, consider
the variable in this entry, which we will call . Since row
shares an Alamouti 2 2 with row over columns and ,
the entry is nonzero; say it contains an instance of some
variable . To maintain orthogonality of , there must be some
other row that shares an Alamouti 2 2 with row over
columns and , such that an instance of is in entry
and an instance of is in entry . We have assumed that

modulo , so since , the proof

of Lemma 3.2 indicates that modulo 2,

and then since , that modulo .

So, we have shown that is a row in with

modulo and with a nonzero in-
stance of in column , hence all instances of were negated
during the instance-negation phase of this algorithm. So, the
instance of in entry , , currently has the in-
correct sign. This implies that all nonzero entries for

have the incorrect sign. To see that
also has the incorrect sign, note that is a row in with

modulo 2, so the instance of in

was not negated during the negation-phase of the algo-
rithm; hence, this instance of has the incorrect sign due to our
initial assumption that all nonzero entries in column within
rows of have the incorrect sign. Thus, we have shown
that the signs are incorrect for all nonzero entries in columns

within any row in that shares an Alamouti

with any row of that has

modulo and is nonzero.
Hence, to restore/obtain correct signs in nonzero entries

located in columns within any row in
that shares an Alamouti with (where is in ,

modulo , and is nonzero),

simply negate row . Equivalently, negate all rows in

such that modulo and is
nonzero.

Now, for the second and final step of the correction phase
of the algorithm, suppose that is a row of that shares
a trivial with (where is as described above) over
columns and for some . Then, by the definition
of trivial ’s, and since contains an instance of ,

must be zero and must contain an instance of
. Since columns were assumed to be in standard

form before the instance-negation phase of this algorithm, and
since all instances of were negated during that phase, the in-
stance of found in entry currently has the incorrect
sign. Similar to the case of shared Alamouti ’s, we will
show that all nonzero entries in columns within

have the incorrect sign: For any such that
is nonzero, we again consider the variable in this entry

and call it . The variable must appear somewhere in column
, say in row . Then, since , the orthogonality

of implies that rows and share a trivial over
columns and . Since we assumed
modulo , Lemma 3.2 shows that if is odd, then since ,

modulo , and then since ,

that modulo . Similarly, if is even,

Lemma 3.2 implies that modulo and

then again that modulo . So, regard-

less of parity of , we have modulo

. This implies that since contains an instance of , all
instances of the variable were negated in the instance-nega-
tion phase of this algorithm. This implies that the instance of
in entry currently has the incorrect sign. (The row ,
hence the entry , was not corrected in any step above, as
all rows corrected above had nonzero entries in column while
row has a zero in column .) This implies that the signs are
incorrect for all nonzero entries in columns within
any row in that shares a trivial with any row of

such that modulo and

is nonzero. ( , so we need not consider the sign of
this entry.)
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Hence, to restore the correct signs of nonzero entries located
in columns within any row of that shares a

trivial with (where is in ,

modulo , and is nonzero), simply negate the row .
If is odd, this is equivalent to negating all rows in

such that modulo and ;

if is even, this is equivalent to negating all rows in

such that modulo and .
In summary, the instance-negation phase of the algorithm

for a set ruined the standard form of certain entries
within columns , but it retained/gave the correct
signs to entries in columns within rows in

where modulo 2 and where
is nonzero. The first step of the correction phase of the al-
gorithm then corrected the ruined signs of entries located in
columns and corrected the initially incorrect sign
on the entry in column within rows of where

modulo and where is

nonzero (these are the rows of that share an Alamouti
with such above-described rows ). The second step

of the correction phase then corrected the signs of entries
located in columns within the rows of
that contain a zero in column (these are the rows of
that share a trivial with such above-described rows

). Since these two steps account for all nonzero entries in
columns within the rows of whose signs
were made incorrect during the instance-negation phase of this
algorithm, we have corrected the signs of all entries in columns

within the rows of , as well as providing the
correct signs in the nonzero entries of within the rows of

. Hence, all entries in columns within
are now in standard form.

We repeat this entire algorithm on every set with re-
spect to column . Part 3) of Lemma 3.6 implies that after com-
pleting this algorithm on all sets with respect to , all
columns are in standard form. Therefore our induc-
tion is complete.

We note that for a given , Theorem 3.7 implies that
maximum rate, minimum delay CODs with columns
are unique up to equivalence operations. This result is of
theoretical interest, and it also has implications for practical
implementations.

Example 3.8: This example illustrates some key steps in the
execution of the standard form algorithm presented in the proof
of Theorem 3.7 . Recall the COD from Example
3.5. Consider , the 2 2 set with respect to column
using the first row of as the seed row; this set is displayed
as the first four rows of . One can confirm that all entries
within columns and are in standard form, and the entries
within that are not in are also in standard form.

To put the entries within in column in standard
form, we must negate all instances of variables that lie within
column within a row in that has

modulo 2. Row is the only such a row, hence we must negate
all instances of . The resulting matrix is shown below as ,

and this completes the instance-negation phase of the algorithm
for the specific set .

The next matrix reflects the first step of the correction phase,
where any row that shares a relevant Alamouti with row

is corrected (namely and are negated); for the second
step of the correction phase, where any row that shares a relevant
trivial with is corrected, no action is taken because no
such row exists in this example.

Hence, since we have completed the correction algorithm on the
rows in within column , and since we started with
correct entries in all other entries within column as well as
correct entries within all rows of columns and , columns

, , and are now in standard form. The entries in columns
and are not necessarily in standard form.

IV. DECODING DELAY OF CODS

In this section, we prove that maximum rate CODs with
columns, odd, cannot achieve the lower bound on decoding
delay, and at best can achieve twice the lower bound. We also
present some implications for the number of variables in such
CODs.
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Theorem 4.1: A maximum rate COD with columns
cannot achieve the lower bound of on decoding
delay if is odd.

Proof: Suppose for contradiction that it is possible to form
an COD where is odd. Recall that for a
COD with or columns, the maximum rate is
and the lower bound on decoding delay is . Then, as any
subset of columns of a COD forms another COD, the first
columns of themselves form a COD that is still of max-
imum rate and that still achieves the lower bound on delay. So,
by Theorem 3.7, since the first columns of form
a COD, we can perform equivalence oper-
ations on so that its first columns are in standard
form. We refer to the submatrix consisting of these first
columns as , and we assume hereafter that has undergone
appropriate equivalence operations so that the submatrix is
in standard form.

Consider the following algorithm that selects rows of
such that for each , row and row share an
Alamouti 2 2 over columns and . As is assumed to
be maximum rate and to achieve the lower bound on delay, we
can assume that every pattern of zeros appears in exactly
one row [13], so we may consider a row with the following zero
pattern:

where represents any nonzero variable (positive or negative,
conjugated or nonconjugated).

Then, row is selected as the row that shares an Alamouti
with row over columns and . By Lemma 3.2,

row will be nonzero in columns and , while its re-
maining entries will be zero when the corresponding entry of
is nonzero and vice versa. Thus, has the following form:

where again represents any nonzero variable.
In general, select as the row that shares an Alamouti

with over columns and . Such a row must
exist to ensure the orthogonality of , assuming that the entries
of row in columns and are nonzero, which we will
prove inductively. The base case uses the given , which is
clearly nonzero in columns and . Now, assume that for
some the row is nonzero in columns and .
Now consider row , which will share an Alamouti
with row , as required for the orthogonality of columns
and . By Lemma 3.2, since is nonzero in columns and

, the new row will also be nonzero in columns and
. However, we must further show that is nonzero in

column . If is odd, then is nonzero in column
. The formation of rows for has not involved

Alamouti ’s with column , so Lemma 3.2 shows that
the entries of these rows within column will have alternated
between nonzero and zero times. Since is odd, by row

this position will have alternated back to being nonzero.
The case where is even follows similarly. Hence, by the
principle of mathematical induction, we have shown that for any

, row is nonzero in columns and . Hence,
for each , the proposed row must exist.

Throughout this algorithm, each column , for
, is paired once with column during the creation of

an Alamouti shared between rows and . Given the
initial row , these pairing produce rows , in
order. Lemma 3.2 shows that when moving from to , the
entries in columns and remain nonzero, while all other
column positions change from zero to nonzero or vice versa.
Thus, over the course of the pairings, every column
position changes from zero to nonzero (or vice versa) exactly

times. Thus, after pairings, we have changed
each column position an even number of times, producing a row

that has exactly the same pattern of zeros as row . Since a
maximum rate COD that achieves the lower bound on delay has
exactly one row with any specific pattern of zeros [13], rows
and must be the same row, while rows are
distinct.

Next, we must look at the signs of the entries of the selected
rows in columns for , which is possible as
these first columns are in standard form. For consistency
of notation, rearrange the rows of so that the distinct
rows , selected by the algorithm are the first

rows of , in order. Then, we need to examine the sign of the
th entries in rows and for each ; the

case of should be interpreted as examining the sign
of the entries of rows and , as the row
selected by the algorithm was shown to be equal to the row
selected by the algorithm, which is currently listed as the first
row of .

Note that when ignoring the last column of rows and ,
these shortened rows, denoted as and , respectively, are
rows in the valid COD that is in standard
form. We have , where the
only 0 is in the position. It can be shown that

. Hence, as in the proof of Lemma 3.2, if
and if the vector expansion of over is

, then we can
write the vector expansion of over as

, where is the
binary compliment of .

So, for , the first coefficients of these vector
expansions are exactly opposite. If is even (respectively,
odd), then we are complementing an odd (respectively,
even) number of binary coefficients, and it follows
that modulo

(respectively,

modulo ). Thus, the signs of entries and are
different (respectively, the same) since is assumed to be in
standard form. It then follows that and
must have the same (respectively, different) signs to maintain
the orthogonality of the Alamouti in the expanded matrix

. If , this should be interpreted to mean that
and must have different signs.

If , (which must be considered separately as the defini-
tion of standard form for differs from the general definition

Authorized licensed use limited to: Cornell University. Downloaded on January 26, 2010 at 10:44 from IEEE Xplore.  Restrictions apply. 



ADAMS et al.: MAXIMUM RATE COMPLEX ORTHOGONAL DESIGNS 109

for , ), the general result for odd still holds as the signs
of and are the same, since the standard form of
column indicates that all nonzero entries in have positive
signs. So, and must have different signs
to maintain the orthogonality of .

Now, consider the nonzero entries
. By the work above, if is odd,

, the entry and the entry
will have opposite signs. If is even, for ,
the entry and the entry will have
the same sign. Hence, we can consider a “path” through the

entries
that records the relationships of the signs of these entries.
We begin with a “different sign” relationship, followed by a
“same sign” relationship, and we continue to alternate until
we end with a “same sign” relationship. (For example, if entry

is positive, then is negative,
is negative, is positive, is positive, and
so on.) This path contains “different sign” relationships
and “same sign” relationships, so if we begin with a
positive (resp., negative) sign on entry , this sign
will change times and remain the same times,
implying that if is odd, then the sign on
will again be positive (respectively, negative). However, this
contradicts our above work showing that entries and

must have different signs.
So, for odd, we began with a valid COD ,

performed equivalence operations on , and then showed that
the version of after undergoing equivalence operations is no
longer a valid COD. Thus, our original assumption that there
exists some valid COD where is odd must be
false. Hence, any maximum rate COD with columns for
odd cannot achieve the lower bound on decoding delay.

Theorem 4.1 can be viewed to imply that a maximum rate,
minimum decoding delay COD, where
is odd, cannot be padded to form a maximum rate, minimum
decoding delay COD. In fact, the delay must be
doubled when moving from this column case to the
column case, as shown in the following corollary.

Corollary 4.2: The minimum achievable decoding delay for
a maximum rate COD with columns, odd, is

.
Proof: It follows directly from [13, Theorem 3.1] and The-

orem 4.1 above that the best possible delay for such a code is
twice the lower bound, . The fact that this delay
is achievable relies on algorithms by other authors, as explained
in the partial proof to [13, Conjecture 3.3]: Lu et al. have proven
that their algorithm achieves this delay in this case [14], and
other algorithms can also be observed to achieve this delay [7],
[12].

Corollary 4.3: Suppose that is a maximum rate complex
orthogonal design with or columns. Then a lower
bound on the number of variables required is . This lower
bound can be achieved when the number of columns is con-
gruent to 0, 1, or 3 modulo 4. When the number of columns is
congruent to 2 modulo 4, the best achievable bound is .

Proof: This follows directly from [13, Corollary 4.1] and
Theorem 4.1 above.

V. CONCLUSION

This paper closes the final case in determining the minimum
achievable decoding delay for maximum rate CODs and their
associated COSTBCs. We have shown that if a maximum rate
COD has congruent to modulo columns, then it can at
best achieve a delay of twice the lower bound. This final case
required machinery beyond that which was employed to prove
the other cases. The bases provide new techniques for ana-
lyzing CODs, and we hope that our linear algebraic machinery
will be helpful to other researchers in this area.

Our work also implied that there is exactly one equivalence
class of maximum rate, minimum decoding delay CODs with

columns.
We can now summarize all known results concerning the min-

imum decoding delay of maximum rate CODs. The minimum
achievable decoding delay for a maximum rate COD with
columns with even or any columns is ,
while the minimum achievable decoding delay for a maximum
rate COD with columns with odd is . In
other words, for modulo 4, we say that a maximum rate,
minimum decoding delay COD has parameters ,
and for modulo 4, a maximum rate, minimum decoding
delay COD has parameters .

This paper completes the study of the minimum decoding
delay of maximum rate CODs, while again highlighting the
quick growth of the decoding delay as the number of columns in-
creases. Since the maximum rate approaches as the number
of columns increases, it will be important to determine the min-
imum decoding delay for rate CODs to see if the small re-
duction in rate would result in a large improvement in decoding
delay.

In this paper, we restricted our attention to CODs without
linear processing (LP), consistent with the previously cited work
on maximum rate [7] and minimum decoding delay [13]. The
same questions of maximum rate and minimum decoding delay
are also important for CODs with LP. Though some work has
been done concerning the existence and optimal parameters of
CODs with LP [1], [17]–[19], it remains open whether the op-
timal rate and delay for generalized CODs with LP are as they
are for CODs without LP.
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APPENDIX

This Appendix contains the proofs of Lemmas 3.2 and 3.6.
1) Proof of Lemma 3.2: We assume throughout that

, as the relevant cases where are simpler and
follow similarly.

Part 1) Suppose that two distinct rows and of an
COD share an Alamouti over

columns and , say containing (up to sign) and (up to
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sign) for some . We can perform equivalence op-
erations on to obtain the submatrix [7] and in particular
to transform and into rows and of . Similarly, we
will write that columns and have been transformed into
columns and . Since and share an Alamouti
over columns and , and likewise share an Alamouti
2 2 over columns and . Moreover, we can assume
will be among the first rows of , will be among the last

rows of .
Since and contain no zero entries [7], the

zeros of occur in columns in which is nonzero, the
zeros of occur in column positions in which is nonzero,
and both rows are simultaneously nonzero in exactly columns

and . Thus, the original rows and were simultaneously
nonzero exactly in columns and and simultaneously zero
in no column position. This proves the forward direction.

Now suppose that and are two rows of such that
and are simultaneously nonzero in exactly two columns

and simultaneously zero in no column. Thus, there are
columns in which exactly one of or must be zero. Since
all rows in a maximum rate COD with columns have
either or zeros [7], this implies that one of these
rows, say , must have zeros and the other, say , must
have zeros.

As the zeros of and the zeros of overlap
in no columns, there exist suitable column rearrangements that
convert and into rows and such that and each
have a nonzero in column , has zeros and has

nonzeros in columns , and are again
each nonzero in column , and has nonzeros and

has zeros in columns .
Suppose the intersection of row and column contains

an instance of the variable . An COD can
contain only one row with a particular pattern of zeros [13], so
the structure of implies that it is a row within the sub-
matrix (up to conjugation and sign). Similarly, the structure of

shows that it is also a row within (again, up to conjuga-
tion and sign). This implies that the intersection of row and
column contains an instance of . It then follows that

and share an Alamouti over columns and .
Hence, the original rows and must share an Alamouti
over the two columns in which they are simultaneously nonzero,
thus proving the reverse direction.

In the case of only, we can restate this result in
terms of the basis of length vectors: Two rows and

share an Alamouti over columns and if and only if
(under binary subtraction). This follows directly

as has a in all positions except for ’s in positions and .
So, the vector expansion of over will only differ from the
vector expansion of over in the coefficient on .
Hence, if and if the vector expansion of over is

, then the vector expansion of over
can be written as

,
where is the binary compliment of . So, we have

hence

modulo . This implies the standard form signs of entries
and are different.

If instead we look at the vector expansions of and
over , they will again only differ in the coefficient
on . So, if , the first coefficients
of these vector expansions over are identical, hence

modulo 2 and the

standard form signs of entries and are the
same. If , the definition of standard form for column
indicates that the signs of entries and are again
the same.

Part 2) Suppose that two distinct rows and of an
COD share a trivial over columns

and containing two instances of the variable for some
. Then, use equivalence operations to form the

submatrix [7] and in particular to transform and into
rows and of . Similarly, we will write that columns
and have been transformed into columns and .

We will assume that and lie within the first rows of
, hence, each contain . The case where and lie within

the last rows of and each contain follows similarly.
As the submatrix contains no zero entries [7], both and

are simultaneously nonzero in columns . In
columns , both and contain zeros and one
instance of . These instances of appear in different columns
by our definition of a COD. Thus, rows and (resp., rows

and ) are simultaneously zero or simultaneously nonzero
in all columns except for within and (resp., and ), the
columns under which they share a trivial . This proves the
forward direction.

Now suppose that and are two rows of such that
and are either simultaneously zero or simultaneously nonzero
in all but two columns and . By this assumption, the en-
tries in column within rows and cannot both be zero
or both be nonzero, and similarly for . We will now show
the stronger result that the entries in row within columns
and cannot both be zero or both be nonzero, and similarly
for . For contradiction, suppose that contained an instance
of zero in both and . Our assumptions then imply that
contains a nonzero in both and . Recall that each row in
a maximum rate COD with columns contains either

or zeros [7], and suppose first that contains
total zeros. Then, in addition to the zeros in columns

and , contains zeros within columns ,
. Our assumptions

then imply that must also contain exactly zeros within
columns , .
However, is already assumed to be nonzero in the two re-
maining columns and , which would leave with only

zeros, contradicting the fact that each row must contain
either or zeros [7]. Similarly, we see that if
contains total zeros, then would contain total
zeros, which is also impossible. Thus, we have shown through
contradiction that the entries in row within columns and
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cannot both be zero or both be nonzero, and similarly for .
This implies directly that and contain the same number of
zeros. We will consider the case where and both contain

zeros, as the case where they both contain zeros
follows similarly. We may now rearrange the columns of so
that rows and are transformed into rows and such
that is zero and is nonzero in column , is nonzero and

is zero in column , and and are simultaneously zero
in the columns and simultaneously nonzero
in the columns .

Suppose that the intersection of row and column con-
tains an instance of . As an COD can con-
tain only one row with a particular pattern of zeros [13], the
structure of row implies that it is a row within the sub-
matrix (up to conjugation and sign). Similarly, the structure of

shows that it is also a row within the submatrix (again up
to conjugation and sign); hence the first entry of must contain
an instance of . It is now clear that and share a trivial

containing two instances of over columns and .
This implies that the original rows and share a trivial
over the two columns in which they are not simultaneously zero
or nonzero, and the reverse direction is proved.

In the case of only, this result can be restated
in terms of the basis as follows: Two rows and share a
trivial over columns and if and only if the binary
difference , where denotes the binary com-
plement of . It then follows that . So,
if a basis vector , , is used in the vector expansion
of over , then it is not used in the vector expansion of
over and vice versa. However, if the basis vector is (not)
used in the expansion of over , it is also (not) used in the
expansion of over , and vice versa.

So, using the vector expansion of over to write
, we

see that implies that the vector expansion
of over can be written as

,
where again is the binary compliment of .

If (so ), then exactly of the first
coefficients of the vector expansions of and are exactly
opposite. Hence, if is even, then we are complementing an even
number of binary coefficients and simple algebra shows that

modulo . Similarly,

if is odd, modulo
.

2) Proof of Lemma 3.6: Part 1) For ,
suppose that an instance of some variable in column
within a row of has the incorrect sign with re-
spect to the standard form. We will consider the case where

modulo , but the instance of in

is negative. The other case follows similarly.
It suffices to consider the rows in that share an Alam-

outi with over column and some , , and
we suppose that contains an instance of variable . (In
such a row that shares a trivial with , we would have

.) Then, must contain an instance of

and must contain an instance of . Since column ,
, is assumed to be in standard form, Lemma 3.2 indicates

that entries and should have the same sign.
Thus, to preserve orthogonality, since is assumed to be
negative, must be positive. However, since we assumed

modulo , the proof of Lemma 3.2 in-

dicates that modulo , which would

indicate that the standard form sign of is negative. So,
has the incorrect sign with respect to standard form.

Continuing to chain together rows that share Alamouti
’s exhausts all of , and we may conclude that all other

entries in column within a row of have the incorrect
sign.

Part 2) For some , suppose that column
contains an instance of the variable within a row in .
Then, to maintain orthogonality of , this instance of in entry

appears within an Alamouti or trivial with each
entry for each . For a given , the second
row of the contains an instance of within column ,
and this row belongs to by the definition of such a
set. Since each variable appears exactly once per column, every
instance of within columns appears within a row
of , and in particular, within a row of that directly
shares an Alamouti or trivial with .

Part 3) This proof is straight-forward; the details are left to
the reader.
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