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The Minimum Decoding Delay of Maximum Rate
Complex Orthogonal Space–Time Block Codes
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Abstract—The growing demand for efficient wireless trans-
missions over fading channels motivated the development of
space–time block codes. Space–time block codes built from gen-
eralized complex orthogonal designs are particularly attractive
because the orthogonality permits a simple decoupled maximum-
likelihood decoding algorithm while achieving full transmit diver-
sity. The two main research problems for these complex orthogonal
space–time block codes (COSTBCs) have been to determine for
any number of antennas the maximum rate and the minimum
decoding delay for a maximum rate code. The maximum rate for
COSTBCs was determined by Liang in 2003. This paper addresses
the second fundamental problem by providing a tight lower bound
on the decoding delay for maximum rate codes. It is shown that
for a maximum rate COSTBC for 2m� 1 or 2m antennas, a tight
lower bound on decoding delay is ~r =

2m

m�1
. This lower bound

on decoding delay is achievable when the number of antennas is
congruent to 0, 1, or 3 modulo 4. This paper also derives a tight
lower bound on the number of variables required to construct
a maximum rate COSTBC for any given number of antennas.
Furthermore, it is shown that if a maximum rate COSTBC has a
decoding delay of r where ~r < r � 2~r, then r = 2~r. This is used to
provide evidence that when the number of antennas is congruent
to 2 modulo 4, the best achievable decoding delay is 2 2m

m�1
.

Index Terms—Generalized complex orthogonal design (GCOD),
maximum rate, minimum decoding delay, multiple-input multiple-
output (MIMO), space–time block code.

I. INTRODUCTION

SPACE–TIME block codes have been widely studied
for their applicability to multiple-input multiple-output

(MIMO) wireless systems. Winters, Foschini, and Telatar each
played significant roles in creating interest in MIMO systems
[1]–[3], and Gesbert et al. have provided a detailed tutorial on
MIMO space–time coded wireless systems [4]. Space–time
block codes built from generalized complex orthogonal designs
can be viewed as a generalization of Alamouti’s scheme [5]
and were introduced by Tarokh et al. [6]. These particular
complex orthogonal space–time block codes (COSTBCs) are
attractive because they can provide full transmit diversity
while requiring a very simple decoupled maximum-likelihood
decoding method [6], [7].
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A generalized complex orthogonal design (GCOD) on
complex variables , is an matrix with entries

, satisfying

where denotes the Hermitian transpose of and is
the identity matrix. This definition requires that each
column of includes exactly one position occupied by

or , for each , and each row has at
most one position occupied by or , for each

. Liang provides a review of variations on this
definition [8].

An GCOD on variables can be utilized as a COSTBC
wherein the columns represent the transmissions of
transmit antennas, the variables represent the transmittable
information symbols, and the number of rows represents the
decoding delay. The rate of the code is defined as , the
ratio of the number of information symbols to the decoding
delay.

The two main research problems have been to determine the
maximum rate for a GCOD with a given number of columns
and to determine the minimum decoding delay (i.e., number
of rows) for a maximum rate GCOD with a given number of
columns. The first question was answered by Liang [7]; the
second question, known as the “fundamental question of gen-
eralized complex orthogonal design theory [6],” is addressed
in this paper.

Liang proved that to achieve full transmit diversity using a
rectangular GCOD with or columns, the maximum
achievable rate is [7]. Furthermore, Liang provided an al-
gorithm for constructing maximum rate GCODs for any number
of columns [7]. Several other authors made progress towards de-
termining the maximum rate and developed algorithms to pro-
duce high or maximum rate GCODs [9]–[11].

With the maximum rate question settled, attention focused
on determining the minimum decoding delay of maximum rate
GCODs. Until now, the minimum decoding delay had been ad-
dressed only in special cases. Liang proved the minimum de-
coding delay for GCODs with five and six columns [7], while
Kan and Shen proved the minimum decoding delay for GCODs
with seven columns and stated the minimum decoding delay for
eight columns [12]. These proofs utilize arguments specialized
to the specific number of columns involved.

Algorithms capable of generating GCODs with arbitrary
numbers of columns [7], [13], recent breakthroughs in antenna
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technology [14], [15], and the growing interest in distributive
systems have contributed to the interest in determining the
minimum decoding delay for maximum rate GCODs with arbi-
trary numbers of columns. As the number of columns increases
beyond four, classical mathematical results imply that there
are no square complex orthogonal designs of maximum rate
[6], [7], [16]–[18]. Therefore, when the number of columns
is greater than four, the fundamental problem of determining
the minimum decoding delay for maximum rate rectangular
GCODs becomes increasingly important.

In this paper, we prove that for a maximum rate GCOD
with or columns, a tight lower bound on the
decoding delay is . This lower bound on decoding delay
is achievable when the number of columns is congruent to ,

, or modulo . When the number of columns is congruent
to modulo , we provide evidence that the best achievable
decoding delay is . This provides insight into which
sizes of GCODs are most efficient in terms of rate and delay.
We also determine a tight lower bound on the minimum number
of variables required to build a maximum rate GCOD for any
given number of columns.

In Section II, we present several results concerning maximum
rate GCODs. In Section III, we provide a tight lower bound on
the decoding delay of maximum rate GCODs. In Section IV, we
provide a tight lower bound on the number of variables required
in a maximum rate GCOD. We conclude our paper in Section V
by discussing some implications of our results.

II. THE STRUCTURE OF MAXIMUM RATE DESIGNS

In this section, we review useful results and present new re-
sults concerning the structure of maximum rate GCODs. The
proofs for the new results are contained in Appendix A.

Throughout this paper, we use the following equivalence op-
erations which can be performed on any GCOD.

1) Rearrange the order in which the rows appear in the matrix
(“row rearrangements”).

2) Rearrange the order in which the columns appear in the
matrix (“column rearrangements”).

3) Conjugate and/or negate all instances of certain variables.
4) Multiply any row and/or column by .

For example, given a GCOD , we can perform row rear-
rangements to obtain a GCOD whose rows are the rows of

simply appearing in a different order. We say that and
are equivalent designs and that is simply a different arrange-
ment of . Throughout this paper, we often consider different
arrangements of a given design by performing equivalence
operations on the rows, columns, and/or entries of . Through a
minor abuse of notation, we refer to any arrangement of a given
GCOD still as .

Throughout, we use Liang’s result that for a GCOD with
or columns, the maximum achievable rate is

[7]. Furthermore, we use Liang’s result that for any variable
in a maximum rate GCOD , it is possible to arrange the ma-
trix through suitable row and column rearrangements, suitable

conjugations of all appearances of , and suitable multiplica-
tions of rows or columns by , to obtain a submatrix of the
following form:

...
...

. . .
...

...
...

. . .
...

Liang further shows that in the case of a maximum rate GCOD
with columns, is and is

either or . In the case of a maximum rate
GCOD with columns, is and is
[7]. Throughout this paper, we assume that in the case where
has columns, the submatrices are size ;
all proofs can be altered slightly to hold if we instead allow the
submatrices to be of size .

For easy reference, we recall the following result of Liang.

Result 2.1: [7] Let be a maximum rate generalized com-
plex orthogonal design on complex variables .
Then, for any , given the submatrix of , the
portion contains no zero entries.

For ease of discussion, we now present two definitions con-
cerning the structure of maximum rate GCODs.

Definition 2.2: We say that a maximum rate generalized com-
plex orthogonal design is in “ form” if the submatrix
can be created in through only row rearrangements, suitable
conjugations and/or negations of all instances of , and suitable
multiplications of rows and/or columns by .

In other words, if is in “ form,” then every row of
appears within the rows of , up to possible conjugations of
all instances of and possible factors of . In the following
sections, we will show that the importance of being in “
form” is that the submatrix can then be obtained within
through equivalence operations (namely, row rearrangements,
conjugations, and multiplications by ) that do not affect the
zero patterns that appear within the rows of .

Definition 2.3: Consider a maximum rate generalized com-
plex orthogonal design with or columns. We define

to be the collection of the first columns of any particular
arrangement of (that is, the left “half” of ). We define
to be the collection of the last or columns when the
total number of columns is or , respectively (that is,
the right “half” of ).

We now provide several results that will be used to derive
our main theorems. The proofs of these results are contained
in Appendix A. The first result, Lemma 2.4, contains a simple
observation that is essential in the balance of this paper.
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Lemma 2.4: Let be a maximum rate generalized complex
orthogonal design on variables . Then, for each

, every instance of or in must appear
in the submatrix .

The following Lemma 2.5 explains that certain types of
column rearrangements of a GCOD in form do not affect
the form.

Lemma 2.5: Let be a maximum rate generalized com-
plex orthogonal design with or columns on vari-
ables . If is in form for some ,
then will remain in form through any column rearrange-
ments such that columns within are rearranged exclusively
within and/or columns within are rearranged exclu-
sively within .

The following Lemma 2.6 can be used to show that a GCOD
is in form if one row of is known to appear within ,

up to conjugations and multiplications by .

Lemma 2.6: Let be a maximum rate generalized complex
orthogonal design with or columns on variables

. If a single row of , for some , is
known to appear in up to conjugation of the variable and
multiplications by , then is in form.

The following Corollary 2.7 is concerned with the effect of
column swaps between and on a submatrix of a
design .

Corollary 2.7: Let be a maximum rate generalized com-
plex orthogonal design with or columns on complex
variables . If is in form for some ,
then swapping columns between and either puts in

form for some or puts back into form.

The final result in this section, Corollary 2.8, is critical for
our proof of the main results in Sections III and IV.

Corollary 2.8: Let be a maximum rate complex orthogonal
design on variables . Then any arrangement of
is in form for some .

III. MINIMUM DECODING DELAY FOR MAXIMUM

RATE DESIGNS

We are now prepared to provide a tight lower bound on the
decoding delay of maximum rate GCODs. We derive the lower
bound using the results presented in Section II, and then we
show that the bound is tight by referring to an algorithm pre-
sented by Lu, Fu, and Xia [13].

Theorem 3.1: A tight lower bound on the decoding delay of
a maximum rate generalized complex orthogonal design with

or columns is

If the number of columns or is congruent to ,
, or modulo , then this lower bound on decoding delay is

achievable.

Proof: We first prove the case where has columns.
Let be the variables in . By Corollary 2.8, any
arrangement of the columns of is in form for some

. Now, consider any columns in for a given
arrangement of . Since is in some form, the structure of

and Result 2.1 together imply that there is a row in that
has zero entries in each of the chosen columns of

(up to conjugation and sign) in the remaining column of ,
and nonzero entries in each of the columns of .

More generally, given any columns of , there must
be at least one row in that has zero entries in these
columns and nonzero entries in each of the remaining columns.
To see this, notice that given any choice of columns of

, these columns can be placed together in . Then,
by Corollary 2.8, this new arrangement of will be in form
for some . Hence, by the structure of and Result
2.1, there must be a row in that has zero entries in each of the

chosen columns of (up to conjugation and sign)
in the remaining column of , and nonzero entries in each of
the columns of .

Thus, we have shown that every possible pattern of exactly
zeros in a row of length must appear within a distinct

row of . Therefore, we may conclude that for a maximum rate
with columns, the minimum number of rows required

(i.e., the minimum decoding delay) is bounded below by
.

We now prove the case where has columns. By
Corollary 2.8, we may assume that is in form for some

. Then, for any chosen columns of , there
is a row in that has zero entries in each of the chosen
columns of (up to conjugation and sign) in the remaining
column of , and nonzero entries in each of the columns
of . Similarly, for any chosen columns of , there
is a row in that has zero entries in each of the chosen
columns of (up to conjugation and sign) in the remaining
column of , and nonzero entries in each of the columns
of . Moreover, since any arrangement of the columns of
results in form for some , it follows that 1) for any
columns of , there must be at least one row of that has zero
entries in each of these columns and nonzero entries in
each of the remaining columns; and 2) for any columns
of , there must be at least one row of that has zero entries
in each of these columns and nonzero entries in each of
the remaining columns. Hence, every possible pattern of exactly

zeros in a row of length must appear within a
distinct row of , and every possible pattern of exactly
zeros in a row of length must appear within a distinct row
of . We may conclude that for a maximum rate with
columns, the minimum decoding delay is bounded below by

By Pascal’s Identity, we can conclude that .
We conclude that when has either or columns,

the decoding delay is bounded below by .
When the number of columns is congruent to , , or

modulo , this means, respectively, that we have columns
where is even, columns where is odd, or
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columns where is even. To show that in these cases we can
achieve the lower bound on decoding delay, we refer to the
work completed by Lu, Fu, and Xia [13]. These authors found a
closed-form description for designs with or columns
with rate , which is now known to be the maximum achiev-
able rate, and they provided a formula for the decoding delay
of their designs. For the case of columns, where is even
(described equivalently as the case for antennas where

and is odd), they give a construction proven
to have a decoding delay which simplifies to . In the
case of columns, their proven delay also simplifies to

. Therefore, since we have proven that the lower bound
for decoding delay for or columns is , and
since Lu, Fu, and Xia have demonstrated construction methods
proven to obtain this delay when the total number of antennas
is congruent to , , or modulo , we can conclude that for
these cases, we can achieve the minimum possible decoding
delay.

Theorem 3.1 completely answers the question as to the min-
imum achievable decoding delay for maximum rate GCODs
with the number of columns equivalent to , , or modulo .
Our next result, Theorem 3.2, will be used to provide informa-
tion concerning the minimum achievable decoding delay for the
case where the number of columns is equivalent to modulo .

Theorem 3.2: Let be a maximum rate complex orthogonal
design with or columns. If two distinct rows of

have the same zero pattern, then every permissible zero pat-
tern must appear in at least two distinct rows and the minimum
achievable decoding delay is , twice the lower bound on
delay.

Proof: Let be the variables in . Suppose
that contains two rows and that have identical zero pat-
terns, i.e., the placement of the zero entries within and are
identical.

Suppose for contradiction that and both contain an entry
from for some . Then, by Lemma 2.4,
there is some series of equivalence operations that can be per-
formed on that transform row into a row in , up to
conjugations and multiplications by ; similarly for . Since
all rows of , up to conjugations and multiplications by ,
must simultaneously appear in when is in form, there
must be some set of column rearrangements, conjugations, and
possible multiplications by that simultaneously transform
into a row of and transform into a row of . Since and

began with identical zero patterns, they must be transformed
into rows and with identical zero patterns. However, by
the structure of , there are no rows in with identical zero
patterns. Hence, if and have identical zero patterns, then
these rows cannot contain any common variables.

It follows from Lemma 2.4 that every row (or some per-
mutation thereof) in appears in a submatrix , for some

, up to conjugations and multiplications by . Sup-
pose then that some permutation of (up to conjugations and
signs) appears within for some variable . Similarly, sup-
pose that some permutation of (up to conjugations and signs)
appears within for some variable . Since and can
contain no common variables, we must assume that .

Then, since and have identical zero patterns, and by Re-
sult 2.1, we can rearrange the columns of so that rows and

are transformed into rows and with all nonzero ele-
ments in the columns of , nonzero elements and (up
to conjugation and sign), respectively, in the th column,
followed by all zeros in the remaining columns of . Clearly,

is a row of , and is a row of (up to conjugations and
signs). By Corollary 2.6, if a single row of appears in , up
to conjugations and signs, then all rows of appear in , up
to conjugations and signs. Similarly, all rows of must appear
in , up to conjugations and signs. We note that conjugations
and multiplications by do not affect the zero patterns of the
rows in or .

We now explain that it is not possible for a single row to
simultaneously be, even up to conjugations and multiplications
by , in and for . A row (up to conjugations
and multiplication by ) in either has its only nonzero
element in as or its only nonzero element in as ,
and similarly for a row in . Since , a single row cannot
simultaneously be contained in both and .

So, given two rows in with the same zero pattern, there
are rearrangements of columns, conjugations of all appearances
of certain variables, and possible multiplications by that
show to contain two distinct submatrices and , with
no overlap of rows between submatrices. We now proceed with
an argument similar to the one utilized in the proof of Theorem
3.1 by considering the arrangement of containing the subma-
trices and . First, in the case of columns, choose any

columns from . Then, due to the structure of and
and Result 2.1, there will be two rows in that contain zero

entries in each of the chosen columns and nonzero entries
in each of the remaining columns. Similarly, given any choice
of columns in , these columns can be put into and,
by Corollary 2.8, this new arrangement of will contain the
distinct rows of and , for some and (up to conjuga-
tion and sign). So, there must be two rows within that contain
zero in each of the chosen columns and nonzero entries in
each of the remaining columns. It follows then that every pos-
sible pattern of zeros must appear at least twice within the
length rows of . So, if one zero pattern appears in two rows
of a maximum rate GCOD, then the minimum achievable de-
coding delay is . Now, in the case with columns,
a similar argument shows that every possible pattern of exactly

zeros and every possible pattern of exactly zeros
must appear twice within the length rows of . Hence,
in this case, the minimum achievable decoding delay is

We conclude that if one allowable zero pattern appears in two
rows of a maximum rate GCOD with or columns,
then the minimum achievable decoding delay is , which
is twice the lower bound on minimum decoding delay. Since
a maximum rate GCOD that achieves the lower bound on de-
coding delay contains each allowable zero pattern in exactly one
row, it follows directly that if a maximum rate GCOD has a de-
coding delay with , then .
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To illustrate Theorem 3.2, we note that each example with
columns produced by Liang’s [7] well-known algorithm has

a decoding delay of exactly twice the lower bound on delay,
and each such example has every allowable pattern of zeros
appearing in exactly two rows. In certain cases, Liang’s algo-
rithm can be amended to produce examples that do achieve the
lower bound on minimum decoding delay. For example, we can
uniquely extend Liang’s example with seven columns to pro-
duce an example with eight columns that does achieve the lower
bound. In (1) in Appendix B, we provide the design with eight
columns that we obtained by extending Liang’s example with
seven columns [7]. Indeed, (1) is a design with and

rows, achieving the lower bound on decoding
delay. The authors note that during revisions of this manuscript,
they noticed that Liang independently demonstrated this same
extension from seven columns to eight columns [19], but it was
not known at that time that this extension produced a code with
the minimum achievable decoding delay.

Theorem 3.2 can also be used to provide evidence of the fol-
lowing conjecture.

Conjecture 3.3: Let be a maximum rate generalized com-
plex orthogonal design. If the number of columns is con-
gruent to modulo , then the decoding delay of can be at
best , twice the lower bound.

Partial Proof: When the number of columns in a max-
imum rate GCOD is congruent to modulo , experimental ev-
idence suggests that it is not possible for the decoding delay to
achieve the lower bound of Theorem 3.1. The issue that seems
to prevent us from achieving the lower bound on decoding delay
stems from the required distribution of negative signs. If it is cor-
rect that we cannot achieve the lower bound on decoding delay
in this case, then our Theorem 3.2 implies that the minimum
achievable decoding delay could be at best , twice the
lower bound. Lu, Fu, and Xia have demonstrated a construction
algorithm proven to achieve a decoding delay of in this
case [13]. Additional algorithms [7], [11] also produce codes
that achieve this same delay. Therefore, we expect that the min-
imum achievable decoding delay in this case is twice the lower
bound on minimum decoding delay.

During revisions of this manuscript, we found that an equiv-
alent conjecture has been made without supporting discussion
by Kan and Shen [12].

IV. MINIMUM NUMBER OF VARIABLES IN MAXIMUM

RATE DESIGNS

In this section, we derive a formula for a tight lower bound
on the number of variables required to build a maximum rate
GCOD.

Corollary 4.1: Suppose that is a maximum rate complex
orthogonal design with or columns. Then a tight
lower bound on the number of variables required is . This
lower bound can be achieved when the number of columns is
equivalent to , , or modulo .

Proof: Recall that a maximum rate GCOD with
or columns has rate [7], where represents the
total number of distinct complex variables in the GCOD and

represents the decoding delay. Then, the lower bound provided
in Theorem 3.1 gives the following:

Hence, the minimum number of variables in a maximum
rate complex orthogonal design with or columns
is . The construction provided by Lu, Fu, and Xia [13]
shows that this bound is tight in the cases where the number of
columns is congruent to or modulo .

We note that the eight-column GCOD in (1) obtained by ex-
tending Liang’s example with seven columns has
variables, achieving the minimum number of variables neces-
sary to produce a maximum rate GCOD with eight columns.

V. CONCLUSION

This paper exploits newly discovered combinatorial proper-
ties of maximum rate GCODs to address the “fundamental ques-
tion of generalized complex orthogonal design theory [6]” by
determining a tight lower bound on the decoding delay of max-
imum rate GCODs.

The results concerning the minimum decoding delay can be
summarized as follows: 1) A lower bound on decoding delay
for maximum rate GCODs with or columns is

. 2) This lower bound is achievable when the number
of columns is congruent to , , or modulo [13]. 3) If a
maximum rate GCOD has a decoding delay with ,
then . Hence, if a maximum rate GCOD does not achieve
the lower bound on delay, then it can achieve at best twice the
lower bound on decoding delay. 4) Twice the lower bound on
decoding delay is achievable when the number of columns is
congruent to modulo [13].

For an alternative view of the structural constraints of max-
imum rate GCODs, we proved that a tight lower bound on the
number of variables required to build a maximum rate GCOD
with or columns is . This lower bound is
achievable when the number of columns is congruent to , , or

modulo [13].
The minimum decoding delay provides an evaluation crite-

rion for comparing maximum rate COSTBCs: We want to chose
those maximum rate codes that achieve the minimum decoding
delay. Given that codes for and transmit antennas
achieve the same maximum rate of , we conjecture that
transmitting with a code designed for antennas where is
odd is undesirable. It appears to be preferable to use one fewer
antenna and cut the delay in half. In future applica-
tions requiring many antennas, we recommend using an-
tennas where is even.

By determining a tight lower bound on the decoding delay
for arbitrary maximum rate COSTBCs, we have shown that
the minimum decoding delay grows quickly with respect to
the number of antennas. The maximum rate approaches
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as the number of antennas increases, and for large numbers
of columns, the reduction of rate from to may be
insignificant compared to the potential reduction in decoding
delay. Therefore, as interest grows in applications involving
large numbers of antennas, it will become increasingly impor-
tant to study the minimum achievable decoding delay for rate

COSTBCs.

APPENDIX A

This appendix contains the proofs of the results presented in
Section II.

Proof of Lemma 2.4: In our GCODs, each variable or its
conjugate appears exactly once per column. Also, for each

, we can arrange using equivalence operations so that
will contain all rows of the submatrix , up to conjugation

of all instances of and multiplications by [7]. Hence, the
instances of or appearing in each column of , up to
conjugation and multiplications by , must be exactly the total
instances of or in .

Proof of Lemma 2.5: Suppose that is in form for some
. Then, up to conjugations and multiplications by ,

the or rows (according to if has or
columns, respectively) of appear in some order in . We may
rearrange the rows such that the (or ) rows of (up
to conjugations and multiplications by ) are the first
(or ) rows in . Label these rows .
Then, suppose a permutation maps the columns
in to in . Then, we can apply the
same permutation to rows , which will restore
(up to conjugations and multiplications by ) in the top por-
tion of . Similarly, after a permutation permuting the
(or ) columns of within , we can apply to the
(or ) rows that correspond to the last

(or ) rows of to restore (up to conjugations and
multiplications by ) in the top portion of . Hence, re-
mains in form after rearranging columns exclusively within

and/or exclusively within .

Proof of Lemma 2.6: We prove here the case with
columns, as the case with columns is similar. First, note
that given , for each , there are suitable column and
row rearrangements, suitable conjugations and/or negations of
all instances of certain variables, and suitable multiplications of
rows and columns by that produce the submatrix within
the design [7]. So, by Definition 2.2, it suffices to determine
which, if any, rearrangements of columns of are necessary to
achieve form.

We assume that some row of , for some , is
known to appear, up to conjugations and multiplications by ,
in a maximum rate GCOD . Now, suppose for contradiction
that is not in form. Then, we must be able to achieve
form by rearranging the columns of in some way.

First, we consider rearranging the columns of such that
columns within are rearranged exclusively within and
columns within are rearranged exclusively within . If
we can achieve form through column rearrangements of this
type, then Lemma 2.5 implies that was already in form.

However, this contradicts our assumption that was not ini-
tially in form.

So, we must consider the case where column rearrangements
involve swapping a column from with a column from .
We will consider the impact of such column rearrangements on
, the row in the initial arrangement of that is known to be

a row of , up to conjugation of and multiplication by .
Note that, up to conjugation of and multiplications by ,
either belongs to the first rows of , or belongs to the
last rows of . It follows from the structure of and Result
2.1 that in the former case, contains one instance of (or

) and zeros within and contains nonzero entries
within . In the latter case, contains within all nonzero
entries and contains within one instance of (or )
and zeros. We assume the former case; the latter follows
similarly.

We consider the effect on of two types of swaps between
and . In a Type 1 swap, a zero entry in from is

exchanged with a nonzero entry in in . Then the row
obtained from after this swap will have two nonzero entries in

and only nonzero entries in . By the definition of
, this row containing (or ) is no longer in (even

up to conjugations or multiplications by ). Hence, by Propo-
sition 2.4, is not in form. Therefore, we cannot achieve

form by performing a single Type 1 swap between columns
in and .

In a Type 2 swap, the column swap exchanges the main diag-
onal entry (or ) of within with some other nonzero
variable or appearing in row in . Then the row
obtained from after this swap has or and zeros
appearing in and nonzero entries (including or )
appearing in . By definition of , this row containing

(or ) no longer appears in (even up to conjugations
or multiplications by ). Hence, by Proposition 2.4, is not
in form. (In fact, is now a row in , up to conjugations
and multiplications by .) Therefore, we cannot achieve
form by performing a single Type 2 swap between columns in

and .
So, we have shown that any single swap of columns between

and converts the row of (up to conjugations and
multiplications by ) into a row that no longer belongs to
(even up to conjugations and multiplication by ). This im-
plies that single column swaps of this type cannot be used to
convert into form. Any nontrivial series of such swaps will
also convert the row of (up to conjugations and multipli-
cations by ) into a row that no longer belongs to (even up
to conjugations and multiplications by ). However, we must
consider the trivial special case wherein each of the columns
in is swapped with a different one of the columns in .
In this special case, the row from (up to conjugations and
multiplications by ) is converted into a row that is again a row
of (up to conjugations and multiplications by ). However,
if we are able to achieve form through this special series of
column swaps, then we must have already been in form be-
fore this special series of column swaps. This follows since this
special series of column swaps serves only to exchange the role
of the submatrix with and the role of the submatrix
with .
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It follows that if contains one row of , up to conjuga-
tions and multiplications by , then any series of column rear-
rangements either precludes the possibility that has achieved

form, or achieves form while implying that must have
also initially been in form. But, since form must be
achievable, we have shown in all cases that if contains one
row of , up to conjugation and multiplication by , then

is already in form.

Proof of Corollary 2.7: We prove here the case with
columns, as the case with columns is entirely similar.
Suppose that is in form, so that clearly contains a row
of , up to conjugations and multiplications by . Then, by
the proof of Lemma 2.6, any series of column swaps between
groups and either eliminates the current form or, in
the trivial special case where the left and right sides of are
completely swapped, restores form. We now show that in
the former case, is moved into form for some .

The proof of Lemma 2.6 shows that a Type 1 swap of a
column in with a column in will change row in into
a row , which is a row with two nonzero entries in
and nonzero entries in . Specifically, suppose that is
the th row of and it contains (up to conjugation and sign)
in entry , where is a column within . Suppose that
exchanges column of with column of , whose
entry is (for some , up to conjugation
and sign). In short, exchanges the entry in with the
entry in . Then, because started in form prior to
this swap, there was another row, say , the th row in , that
had the variable (up to conjugation and sign) in entry
within , all other entries as 0 within , and all nonzero
elements within . In particular, say entry within is

(up to conjugation and sign). Hence, is a row with
all zeros in except for (up to conjugation and sign) in
entry and all nonzeros in . (In fact, performing a Type
1 swap with respect to row is equivalent to performing a Type
2 swap with respect to row .) Hence, is a row of , up to
conjugation of all appearances of and possible multiplication
by . Then, by Lemma 2.6, is in form. It follows directly
that any nontrivial series of Type 1 swaps will also move into
some form.

The proof of Lemma 2.6 shows that a Type 2 swap will change
row of , up to conjugation and multiplication by , into
a row which is a row of , up to conjugations and multi-
plications by . By Lemma 2.6, since is a row of up
to conjugations and multiplications by , is in form. It
follows directly that any nontrivial series of Type 2 swaps will
also move into some form.

Therefore, we can conclude that given a design in form,
any series of column swaps between and results in the
creation of a form, either through the trivial special case
where we regain form, or where the form is eliminated
and a new form is created with .

Proof of Corollary 2.8: Consider an arbitrary arrangement
of the rows, columns, and entries of a GCOD , and call this
the initial arrangement of . Since the submatrix must be
achievable [7], Definition 2.2 implies that we can perform ap-
propriate column rearrangements to put in form. Now, we (1)
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consider the inverse permutations of the columns that are nec-
essary to restore to its initial arrangement. Restoring to its
initial arrangement may involve any series of column rearrange-
ments involving the swapping of columns between and ,
the rearranging of columns exclusively within , and/or the
rearranging of columns exclusively within .

By Corollary 2.7, any column rearrangement involving swap-
ping columns in with columns in either results in the
restoration of form or the elimination of the current
form and the creation of a new form with . Then, by
Lemma 2.5, any rearrangement of columns of wholly within

or wholly within will keep in the current form. It
follows that any series of any types of column rearrangements,
in any order, will move to some form, for some .
Hence, given an arbitrary initial arrangement of , the design

is in form for some .

APPENDIX B

See (1) on the preceding page.
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